『壹』 網友說的snn什麼意思
SNN是指脈沖神經網路。它是一種大數據演算法,與傳統的人工神經網路相似,但具有獨特的特性和結構。以下是SNN的詳細解釋:
SNN通過模擬生物神經元的脈沖發放過程,實現了對信息的處理和傳輸,具有更高的生物真實性和計算效率。
『貳』 評價中心技術名詞解釋
對評價中心技術名詞機器學習、深度學習、神經網路、人工智慧、數據挖掘、平台化、大數據、可持續發展名詞解釋。
1、機器學習:機器學習是一種人工智慧的分支,通過讓計算機具有「學習」的能力和「感知」能力,從而讓計算機能夠從數據中自動發現規律和特徵,並提高自身的性能和推理能力。
2、深度學習:深度學習是機器學習的一種,其核心思想是模擬人類大腦的神經元,通過設計大規模的人工神經網路,從而對復雜的數據進行分析和學習。
3、神經網路:神經網路是一種基於人工神經元的計算模型,它可以用於模擬和解決與人類智能有關的任務,如圖像識別、語音識別等。
7、大數據:大數據是指海量、高維、多樣化的數據,這些數據無法使用傳統數據處理工具進行處理,需要藉助於數據挖掘、機器學習、深度學習等技術進行處理和分析。
8、可持續發展:可持續發展是指滿足當前需求的同時,不會破壞後代的資源和環境,創造一個平等、和諧、穩定的新世界。
評價中心技術是什麼:
評價中心技術是指通過各種方法和手段,對產品、服務、流程、系統等進行全面評估和分析,以提高其質量和效率,滿足用戶需求的過程。評價中心技術的主要任務是收集和分析各種數據,搜集用戶反饋信息,建立模型和指標,制定評價標准和方案,為企業提供質量和效率方面的指導。
『叄』 大數據指的是什麼
大數據屬於計算機科學學科領域,指的是通過分析和挖掘全量的非抽樣的數據輔助決策,是近年來一種新興技術,在各行各業中都有著非常廣泛的應用價值,下面我就帶領大家詳細盤點一下。
大數據技術指的是無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
一是機器學習、人工智慧繼續成為大數據智能分析的核心技術,大數據預測和決策支持仍是主要應用。在學術上,深度分析繼續扮演技術主角,推動整個大數據智能的應用。通過像神經網路模型的深度學習,讓計算機自動學習產生特徵的方法,並將特徵學習融入建立模型的過程中,增加設計特徵的完備性。深度學習將在圖像分類、語音識別、問答系統等應用取得重大突破,並有望得到成功商業應用。
二是數據科學帶動多學科融合。隨著社會的數字化程度逐步加深,更為寬泛、更為包容大數據的邊界不斷完善,使得越來越多的學科在數據層面趨於一致,為類比科學研究創造了條件。「數據科學」的基礎研究與成果將源源不斷地注入技術研究和應用范疇中。
三是開源是主流技術,公測促良好研發生態。大數據的處理模式更加多樣化,Hadoop不再成為構建大數據平台的唯一選擇。隨著開源項目Spark不斷被大規模應用,正成為大數據領域最大的開源社區。開源系統將成為大數據領域的主流技術和系統選擇,並將引領著大數據生態系統的發展。各類大數據應用公測將促進大數據技術取得突破性進展。
四是基於知識圖譜的大數據應用成為熱門應用場景。近年來,大數據成為大眾媒體的熱詞,大眾需要可視化的大數據,背後是基於知識圖譜的大數據應用。可視化是通過把復雜的數據轉化為可以交互的圖形,幫助用戶更好地理解分析數據對象,發現、洞察其內在規律。讓對信息技術不熟悉的普通民眾和非技術專業的常規決策者也能夠更好地理解大數據及其分析的效果和價值,進而從國計、民生兩方面都充分發揮大數據的價值。
『肆』 大數據還能火多久
大數據更像是一種「系統化工程」,在企業的接受速度方面要落後於整個業界的炒作。2017年,「大數據」這個詞正在逐漸淡出我們的視野,但這種技術本身還在飛速擴張。
各行各業的各種大數據應用的相關產品越來越成熟,在越來越多的財富1000強企業內開始投入實用,很多初創公司藉助這些技術快速實現了收入增長。
與此同時,炒作開始轉向了這個生態系統中機器學習和人工智慧等領域。過去幾個月來,人工智慧領域涌現出一種「大爆炸」式的集體意識,這一情況與幾年前大數據技術的「遭遇」相差無幾,不過發展速度更快。
從上層趨勢來說:
大數據 + 人工智慧 = 全新技術棧
企業的預算:逐利。企業數據正在陸續上雲
大數據與人工智慧強強聯合,我們即將進入「收獲」的季節。忽略各種炒作,我們迎來了數量眾多的可能性。
隨著核心基礎架構以及應用程序端日漸成熟,人工智慧技術驅動的應用將迎來井噴期,2017年後,大數據(以及人工智慧)生態幾將火力全開。
大數據不僅會越來越火,還會一直火下去!
『伍』 人工智慧、機器學習、深度學習、神經網路:有什麼區別
技術在日常生活中迅速滲透,推動公司依賴機器學習演算法簡化事務。人工智慧(AI)、機器學習(ML)、深度學習和神經網路是相關技術,但術語的頻繁混用常導致對它們差異的混淆。本篇將澄清術語之間的細微差異。
人工智慧(AI)為最寬泛的術語,指的是模仿人類智能和認知功能的機器,利用預測和自動化優化復雜任務,如面部和語音識別、決策和翻譯。
機器學習(ML)是AI的一個子集,通過優化實現預測,減少基於猜測的錯誤。亞馬遜等公司利用機器學習根據客戶行為推薦產品。
深度學習是ML的子領域,神經網路構成其基礎。深度學習演算法必須超過三層,自動化特徵提取任務,適用於大量數據集和非結構化數據。
神經網路,作為ML的一個子集,模仿大腦神經元,通過多層節點(輸入、隱藏、輸出)處理數據。它們通過訓練數據學習,實現高效的數據分類和聚類,如語音和圖像識別。
深度學習與ML的主要區別在於學習方式和數據量需求。深度學習自動化特徵提取,適應大數據集,尤其適用於非結構化數據,如圖像和文本。
管理AI數據至關重要,確保正確系統構建學習演算法,管理數據存儲、清理和控制偏見,以實現AI目標。IBM等資源提供了深入的見解和指南。
『陸』 什麼叫大數據
大數據概述
專業解釋:大數據英文名叫big data,是一種IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
通俗解釋:大數據通俗的解釋就是海量的數據,顧名思義,大就是多、廣的意思,而數據就是信息、技術以及數據資料,合起來就是多而廣的信息、技術、以及數據資料。
大數據提出時間
「大數據」這個詞是由維克托·邁爾-舍恩伯格及肯尼斯·庫克耶於2008年8月中旬共同提出。
大數據的特點
Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)-由IBM提出。
大數據存在的意義和用途是什麼?
看似大數據是一個很高大上的感覺,和我們普通人的生活相差甚遠,但是其實不然!大數據目前已經存在我們生活中的各種角落裡了,舉個例子,我們現在目前最關心的疫情情況數據,用的就是大數據的技術,可以實時查看確診人數以及各種疫情數據。
大數據存在的意義是什麼?
從剛才的舉例中我們基本可以了解,大數據是很重要的,其存在的意義簡單來說也是為了幫助人們更直觀更方便的去了解數據。而通過了解這些數據後又可以更深一步的去挖掘其他有價值的數據,例如今日頭條/抖音等產品,通過對用戶進行整理和分析,然後根據用戶的各種數據來判斷用戶的喜愛,進而推薦用戶喜歡看的東西,這樣做不僅提升了自身產品的體驗度,也為用戶提供了他們需要的內容。
大數據的用途有哪些?
要說大數據的用途,那可就相當廣泛了,基本各行各業都可以運用到大數據的知識。如果簡單理解的話,可分為以下四類:
用途一:業務流程優化
大數據更多的是協助業務流程效率的提升。能夠根據並運用社交網路數據信息 、網站搜索及其天氣預告找出有使用價值的數據信息,這其中大數據的運用普遍的便是供應鏈管理及其派送線路的提升。在這兩個層面,自然地理精準定位和無線通信頻率的鑒別跟蹤貨物和送大貨車,運用交通實時路況線路數據信息來選擇更好的線路。人力資源管理業務流程也根據大數據的剖析來開展改善,這這其中就包含了職位招聘的調整。
用途二:提高醫療和研發
大型數據分析應用程序的計算能力允許我們在幾分鍾內解碼整個dna。可以創造新的治療方法。它還能更好地掌握和預測疾病。如同大家配戴智能手錶和別的能夠轉化成的數據信息一樣,互聯網大數據還可以協助病人盡快醫治疾患。現在大數據技術已經被用於醫院監測早產兒和生病嬰兒的狀況。通過記錄和分析嬰兒的心跳,醫生預測可能的不適症狀。這有助於醫生更好地幫助寶寶。
用途三:改善我們的城市
大數據也被用於改進我們在城市的生活起居。比如,依據城市的交通實時路況信息,運用社交媒體季節變化數據信息,增加新的交通線路。現階段,很多城市已經開展數據分析和示範點新項目。
用途四:理解客戶、滿足客戶服務需求
互聯網大數據的運用在這個行業早已廣為人知。重點是如何使用大數據來更好地掌握客戶及其興趣和行為。企業非常喜歡收集社交數據、瀏覽器日誌、分析文本和感測器數據,以更全面地掌握客戶。一般來說,建立數據模型是為了預測。
如何利用大數據?
那我們了解了這么多關於大數據的知識,既然大數據這么好,我們怎麼去利用大數據呢?那這個就要說到大數據的工具BI了,BI簡單理解就是用來分析大數據的工具,從數據的採集到數據的分析以及挖掘等都需要用到BI,BI興起於國外,比較知名的BI工具有Tableau、Power BI等;而國內比較典型的廠家就是億信華辰了。雖然BI興起於國外,但是這些年隨著國內科技的進步以及不斷的創新,目前國內BI在技術上也不比國外的差,而且因為國內外的差異化,在BI的使用邏輯上,國內BI更符合國內用戶的需求。
希望對您有所幫助!~
『柒』 什麼叫大數據
什麼叫大數據?
大數據-網路
大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
大數據-維基網路
大數據(英語:Big data或Megadata),或稱巨量數據、海量數據、大資料,指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息[3][4]。在總數據量相同的情況下,與個別分析獨立的小型數據集(data set)相比,將各個小型數據集合並後進行分析可得出許多額外的信息和數據關系性,可用來察覺商業趨勢、判定研究質量、避免疾病擴散、打擊犯罪或測定實時交通路況等;這樣的用途正是大型數據集盛行的原因。
截至2012年,技術上可在合理時間內分析處理的數據集大小單位為艾位元組(exabytes)。在許多領域,由於數據集過度龐大,科學家經常在分析處理上遭遇限制和阻礙;這些領域包括氣象學、基因組學[9]、神經網路體學、復雜的物理模擬,以及生物和環境研究。這樣的限制也對網路搜索、金融與經濟信息學造成影響。數據集大小增長的部分原因來自於信息持續從各種來源被廣泛收集,這些來源包括搭載感測設備的移動設備、高空感測科技(遙感)、軟體記錄、相機、麥克風、無線射頻辨識(RFID)和無線感測網路。自1980年代起,現代科技可存儲數據的容量每40個月即增加一倍;截至2012年,全世界每天產生2.5艾位元組(2.5×1018)的數據。
大數據幾乎無法使用大多數的資料庫管理系統處理,而必須使用「在數十、數百甚至數千台伺服器上同時平行運行的軟體」。大數據的定義取決於持有數據組的機構之能力,以及其平常用來處理分析數據的軟體之能力。「對某些組織來說,第一次面對數百GB的數據集可能讓他們需要重新思考數據管理的選項。對於其他組織來說,數據集可能需要達到數十或數百兆位元組才會對他們造成困擾。」
隨著大數據被越來越多的提及,有些人驚呼大數據時代已經到來了,2012年《紐約時報》的一篇專欄中寫到,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。但是並不是所有人都對big data感興趣,有些人甚至認為這是商學院或咨詢公司用來嘩眾取寵的buzzword,看起來很新穎,但只是把傳統重新包裝,之前在學術研究或者政策決策中也有海量數據的支撐,大數據並不是一件新興事物。
大數據時代的來臨帶來無數的機遇,但是與此同時個人或機構的隱私權也極有可能受到沖擊,大數據包含了各種個人信息數據,現有的隱私保護法律或政策無力解決這些新出現的問題。有人提出,大數據時代,個人是否擁有「被遺忘權」,被遺忘權即是否有權利要求數據商不保留自己的某些信息,大數據時代信息為某些互聯網巨頭所控制,但是數據商收集任何數據未必都獲得用戶的許可,其對數據的控制權不具有合法性。2014年5月13日歐盟法院就「被遺忘權」(right to be forgotten)一案作出裁定,判決Google應根據用戶請求刪除不完整的、無關緊要的、不相關的數據以保證數據不出現在搜索結果中。這說明在大數據時代,加強對用戶個人權利的尊重才是時勢所趨的潮流。
『捌』 人工神經網路概念梳理與實例演示
人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全。
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。