❶ 數據處理的意義有哪些
數據處理的意義有:數據處理是實現空間數據有序化的必要過程。數據處理是檢驗數據質量的關鍵環節。數據處理是實現數據共享的關鍵步驟。
數據處理的基本目的是從大量的、可能是雜亂無章的、難以理解的數據中抽取並推導出對於某些特定的人們來說是有價值、有意義的數據。
數據處理是系統工程和自動控制的基本環節。數據處理貫穿於社會生產和社會生活的各個領域。數據處理技術的發展及其應用的廣度和深度,極大地影響了人類社會發展的進程。
(1)數據前處理有什麼作用擴展閱讀:
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
雖然採集端本身會有很多資料庫,但是如果要對這些大量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。
也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。