『壹』 數據缺失想要補齊有什麼方法,用spss的替換缺失值和缺失值分析完全不會用
1、均值插補。數據的屬性分為定距型和非定距型。如果缺失值是定距型的,就以該屬性存在值的平均值來插補缺失的值;如果缺失值是非定距型的,就根據統計學中的眾數原理,用該屬性的眾數(即出現頻率最高的值)來補齊缺失的值。
2、利用同類均值插補。同均值插補的方法都屬於單值插補,不同的是,它用層次聚類模型預測缺失變數的類型,再以該類型的均值插補。假設X=(X1,X2...Xp)為信息完全的變數,Y為存在缺失值的變數。
那麼首先對X或其子集行聚類,然後按缺失個案所屬類來插補不同類的均值。如果在以後統計分析中還需以引入的解釋變數和Y做分析,那麼這種插補方法將在模型中引入自相關,給分析造成障礙。
3、極大似然估計(Max Likelihood ,ML)。在缺失類型為隨機缺失的條件下,假設模型對於完整的樣本是正確的,那麼通過觀測數據的邊際分布可以對未知參數進行極大似然估計(Little and Rubin)。
這種方法也被稱為忽略缺失值的極大似然估計,對於極大似然的參數估計實際中常採用的計算方法是期望值最大化(Expectation Maximization,EM)。
4、多重歲御型插補(Multiple Imputation,MI)。多值插補的思想來源於貝葉乎猜斯估計,認為待插補的值是隨機的,它的值來自於已觀測到的值。具體實踐上通常是估計出待插補的值,然後再加上不同的雜訊,形成多組可選插補值。根據某種選擇依據,選取最合適的插補值。
(1)spss怎麼補全數據擴展閱讀
缺失值產生的原因很多,裝備故障、無法獲取信息、與其他欄位不一致、歷史原因等都可能產生缺失值。一種典型的處理方法是插值,插值之後拆氏的數據可看作服從特定概率分布。另外,也可以刪除所有含缺失值的記錄,但這個操作也從側面變動了原始數據的分布特徵。
對於缺失值的處理,從總體上來說分為刪除存在缺失值的個案和缺失值插補。對於主觀數據,人將影響數據的真實性,存在缺失值的樣本的其他屬性的真實值不能保證,那麼依賴於這些屬性值的插補也是不可靠的,所以對於主觀數據一般不推薦插補的方法。插補主要是針對客觀數據,它的可靠性有保證。
『貳』 如何把spss中的缺失值替換為0
1、首先打開已經存抄在的數據。