A. 大數據治理存在哪些誤區
誤區一:客戶需求不明確
客戶既然請廠商來幫助自己做數據治理,必定是看到了自己的數據存在種種問題。但是做什麼,怎麼做,做多大的范圍,先做什麼後做什麼,達到什麼樣的目標,業務部門、技術部門、廠商之間如何配合做······很多客戶其實並沒有想清楚自已真正想解決的問題。數據治理,難在找到一個切入點。
誤區二:數據治理是技術部門的事
數據問題產生的原因,往往是業務>技術,如:數據來源渠道多,責任不明確,導致同一份數據在不同的信息系統有不同的表述;業務需求不清晰,數據填報不規范或缺失,等等。很多表面上的技術問題,如ETL過程中某代號變更導致數據加工出錯,影響報表中的數據正確性等,在本質上其實還是業務管理的不規范。
誤區三:大而全的數據治理
出於投資回報的考慮,客戶往往傾向於做一個覆蓋全業務和技術域的、大而全的數據治理項目。從數據的產生,到加工、應用、銷毀,數據的整個生命周期他們希望都能管到。從業務系統,到數據中心,到數據應用,裡面的每個數據他們希望都能被納入到數據治理的范圍中來。
關於大數據治理存在哪些誤區,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。