『壹』 工業大數據應用難點有哪些
工業大數據應用難點有:
一是大數據技術的運用困難,存在數據不足、數據信噪比低以及數據分析難度高等問題。
二是大數據給信息安全帶來新挑戰,如工業大數據加大了隱私泄露的風險,對現有存儲和安全措施提出了更高要求,以及大數據正在被運用到新的攻擊手段中。
目前,工業大數據在產品創新設計、產品故障診斷與預測、供應鏈的分析和優化、產品銷售預測與大數據營銷、生產計劃與排程、產品質量管理與分析等場景有廣泛的應用。「數據是工業互聯網的血液。」何友如此描述大數據與工業互聯網的互為動力。
不過,由於工業大數據數據價值密度高,數據類型繁多,多源異構的機構化數據和非結構化數據並存,數據處理實行性要求也非常高,數據關系和關聯性異常復雜等特徵,企業如何從數據統計分析能力轉變為大數據分析、預測和決策能力,促進傳統工業升級改造和產業整合,是目前要解決的核心關鍵問題。
『貳』 工業大數據應用難點有
工業大數據應用難點有下面這些:
一是大數據技術的運用困難,存在數據不足、數據信噪比低以及數據分析難度高等問題;
二是大數據給信息安全帶來新挑戰,如工業大數據加大了隱私泄露的風險,對現有存儲和安全措施提出了更高要求,以及大數據正在被運用到新的攻擊手段中;
此一詞語在2012年隨著工業4.0的概念而出現,也和信息技術行銷流行的大數據有關,工業大數據也意味著工業設備產生的大量數據有其潛在的商業價值。工業大數據會配合工業互聯網的技術,利用原始資料來支援管理上的決策,例如降低維護成本以及提升對客戶的服務。
工業大數據是指在工業領域中,圍繞典型智能製造模式,從客戶需求到銷售、訂單、計劃、研發、設計、工藝、製造、采購、供應、庫存、發貨和交付、售後服務、運維、報廢或回收再製造等整個產品全生命周期各個環節所產生的各類數據及相關技術和應用的總稱。
其以產品數據為核心,極大延展了傳統工業數據范圍,同時還包括工業大數據相關技術和應用。其主要來源可分為以下三類:第一類是生產經營相關業務數據。第二類是設備物聯數據。第三類是外部數據。
『叄』 大數據面行業發展面臨哪些現實困境
1、大部分數據都是孤立的,與其他類型的數據隔離開來,無法進行宏觀全面的分析。例如,財務數據很難與消費者數據輕松匯總,以獲得關於特定客戶行為對公司財務績效影響的更深刻的見解。
2、很難足夠快地處理大數據以使洞察有用。大多數類型的數據的價值都是短暫的,消費者今天所做的將在明天和後天發生改變。為了獲得最大利益,企業需要能夠快速提供行動指導的洞察,但大多數傳統的資料庫系統無法以必要的速度處理數據。
3、收集的大部分數據都被浪費掉了。負責在海量數據中尋找業務問題「答案」的業務分析師必須過濾掉不相關的數據,並找出可能存在答案的特定數據集。結果,估計有60%至73%的數據未提供價值。如今,另一個主要的數據來源正在推動潮流——物聯網數據。物聯網在許多方面加劇了數據問題,但它也提供了解決方案。
『肆』 鎴戝浗澶ф暟鎹涓蹇冨彂灞曢潰涓村摢浜涢棶棰樹笌鎸戞垬
鎴戝浗澶ф暟鎹涓蹇冨彂灞曢潰涓寸殑闂棰樹笌鎸戞垬涓昏佸寘鎷浠ヤ笅鍑犱釜鏂歸潰錛
1. 鏁版嵁瀹夊叏涓庨殣縐佷繚鎶わ細闅忕潃澶ф暟鎹鐨勫箍娉涘簲鐢錛屾暟鎹瀹夊叏鍜岄殣縐佷繚鎶ゆ垚涓洪噸瑕佺殑闂棰樸傚ぇ鏁版嵁涓蹇冮渶瑕佺『淇濇暟鎹涓嶈鏈緇忔巿鏉冪殑浜哄憳鎴栫粍緇囪幏鍙栵紝鍚屾椂涔熻佺﹀悎鐩稿叧鐨勯殣縐佷繚鎶ゆ硶瑙勫拰鏍囧噯銆
2. 鏁版嵁鍏變韓涓庢暣鍚堬細澶ф暟鎹鐨勫簲鐢ㄩ渶瑕佸ぇ閲忕殑鏁版嵁錛屼絾鐩鍓嶆垜鍥界殑鏁版嵁鏁村悎鍜屽叡浜榪樺瓨鍦ㄤ竴浜涢棶棰樸備笉鍚岄儴闂ㄣ佷笉鍚屽湴鍖虹殑鏁版嵁鏍囧噯涓嶇粺涓錛屾暟鎹瀛ゅ矝鐜拌薄杈冧負鏅閬嶏紝榪欑粰澶ф暟鎹鐨勫垎鏋愬拰搴旂敤甯︽潵浜嗕竴瀹氱殑鍥伴毦銆
3. 鎶鏈涓庝漢鎵嶇煭緙猴細澶ф暟鎹鎶鏈鍙戝睍榪呴燂紝鎴戝浗鍦ㄧ浉鍏蟲妧鏈鏂歸潰鐨勭爺鍙戝拰搴旂敤姘村鉤榪橀渶瑕佽繘涓姝ユ彁鍗囥傚悓鏃訛紝澶ф暟鎹浜烘墠鐭緙轟篃鏄褰撳墠闈涓寸殑闂棰橈紝灝ゅ叾鏄鍏峰囨暟鎹鍒嗘瀽銆佹暟鎹鎸栨帢絳夋妧鑳界殑澶嶅悎鍨嬩漢鎵嶆洿涓虹揣緙恆
4. 娉曡勪笌鏀跨瓥鐜澧冿細澶ф暟鎹涓蹇冪殑榪愯惀鍜岀$悊闇瑕佺浉搴旂殑娉曡勫拰鏀跨瓥鐜澧冩敮鎸併傜洰鍓嶆垜鍥藉湪鐩稿叧娉曡勫拰鏀跨瓥鏂歸潰榪樺瓨鍦ㄤ竴浜涗笉瀹屽杽鐨勫湴鏂癸紝闇瑕佽繘涓姝ュ畬鍠勩
5. 鑳芥簮涓庣幆澧冮棶棰橈細澶ф暟鎹涓蹇冪殑榪愯惀闇瑕佸ぇ閲忕殑鐢靛姏鍜屽喎鍗磋懼囷紝浠ヤ繚鎸佹暟鎹涓蹇冪殑姝e父榪愯屻傛垜鍥界洰鍓嶉潰涓寸潃鐢靛姏渚涘簲緔у紶鍜岀幆澧冩薄鏌撶瓑闂棰橈紝榪欑粰澶ф暟鎹涓蹇冪殑鍙戝睍甯︽潵浜嗕竴瀹氱殑鎸戞垬銆
涓轟簡搴斿硅繖浜涙寫鎴橈紝鎴戝浗搴旇ュ姞寮烘暟鎹瀹夊叏鍜岄殣縐佷繚鎶ゆ妧鏈鐨勭爺鍙戝拰搴旂敤錛屾帹鍔ㄦ暟鎹鏁村悎鍜屽叡浜宸ヤ綔錛屽姞寮哄ぇ鏁版嵁鎶鏈浜烘墠鐨勫煿鍏誨拰寮曡繘錛屽畬鍠勭浉鍏蟲硶瑙勫拰鏀跨瓥鐜澧冿紝騫剁Н鏋佹帰緔㈢豢鑹茶兘婧愬拰鐜淇濇妧鏈鍦ㄥぇ鏁版嵁涓蹇冪殑搴旂敤銆