『壹』 電商數據分析需要統計哪些指標
最重要的就是這幾個了:
1 、商品數據分析:電商平台定期都要對商品銷售進行分析,比如針對各個不同商品的銷量、庫存分析、商品評論等。做商品數據分析,可以從時間維度或者從不同商品的類別、價格等多個維度來做分析,這里可以做的數據圖表類型很多,比如從時間維度、商品類別、價格維度等;
以上電商相關的可視化圖表的製作工具為BDP個人版,可以將各個平台數據統一整合到BDP,然後做好一次分析圖表,後期就不需要重復分析啦!
『貳』 電商平台應該分析哪些數據
1. 總體運營指標
從流量、訂單、總體銷售業績、整體指標進行把控,起碼對運營的電商平台有個大致了解,到底運營的怎麼樣,是虧是賺。
2.網站流量指標
即對訪問你網站的訪客進行分析,基於這些數據可以對網頁進行改進,以及對訪客的行為進行分析等等。
3. 銷售轉化指標
分析從下單到支付整個過程的數據,幫助你提升商品轉化率。也可以對一些頻繁異常的數據展開分析。
4. 客戶價值指標
這里主要就是分析客戶的價值,可以建立RFM價值模型,找出那些有價值的客戶,精準營銷等等。
5.商品類指標
主要分析商品的種類,那些商品賣得好,庫存情況,以及可以建立關聯模型,分析那些商品同時銷售的幾率比較高,而進行捆綁銷售,有點像啤酒喝尿布的故事。
6. 市場營銷活動指標
主要監控某次活動給電商網站帶來的效果,以及監控廣告的投放指標。
7. 風控類指標
分析賣家評論,以及投訴情況,發現問題,改正問題。
8. 市場競爭指標
主要分析市場份額以及網站排名,進一步進行調整。
關於電商平台應該分析哪些數據,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
以上是小編為大家分享的關於電商平台應該分析哪些數據?的相關內容,更多信息可以關注環球青藤分享更多干貨
『叄』 電商網站每天產生哪些數據需要收集
營銷數據,包括營銷費用、打開點擊用戶數。人均費用、打開率等。
流量數據,包括流量量(PV)、訪客數(UV)、登錄時間、在線時長等基礎數據。
注冊或會員數據。
交易及服務數據。包括交易金額、交易數量、交易人數、交易商品、交易時間等。
『肆』 電商平台應該分析哪些數據具體怎麼去分析
電子商務平台需要分析的數據及分析規則如下:
一、網站運營指標:
網站運營指標主要用於衡量網站的整體運營情況。在這里,EC數據分析聯盟暫時將網站運營指標分為網站流量指標、商品類別指標和供應鏈指標。網站流量指標主要用於考慮網站優化、網站可用性、網站流量質量和客戶購買行為。
商品類別指標主要用於衡量網站商品的正常運營水平,與銷售指標和供應鏈指標密切相關。這里的供應鏈指標主要是指電子商務網站的商品庫存和商品配送,而不考慮商品的生產和原材料的庫存和運輸。
二、商業環境指標:
這里,電子商務網站經營環境指標分為外部競爭環境指標和內部購物環境指標。外部競爭環境指標主要包括市場佔有率、市場拓展率、網站排名等,這些指標通常使用第三方研究公司的報告數據。與獨立的B2C網站相比,淘寶在這方面的數據要准確得多。
網站內部購物環境指標包括功能指標和運營指標(這部分與之前的流量指標一致)。常見的功能指標包括商品種類的多樣性、支付配送方式、網站正常運行、連接速度等。
三、銷售業績指標:
銷售業績指標與公司的財務收入直接掛鉤,在所有數據分析指標體系中起著主導作用。其他數據指標可根據該指標進行細分。
網站銷售績效指標主要關注網站訂單的轉化率,而訂單銷售指標主要關注具體毛利率、訂單效率、重復采購率、退貨率和匯率。當然,還有很多指標,如總銷售額、品牌類別銷售額、總訂單、有效訂單等,這里沒有列出。
四、營銷活動指標:
營銷活動的成功通常從活動效果(收入和影響)、活動成本和活動凝聚力(通常通過用戶注意力、活動用戶數量和客戶單價來衡量)等方面來考慮。在這里,營銷活動指標分為日常市場運營活動指標、廣告宣傳指標和對外合作指標。
其中,市場經營活動指標和廣告投放指標主要考慮新增客源數量、訂單數量、訂單轉化率、每次訪問成本、每次轉化收益和投資回報。而對外合作的指標則由具體的合作夥伴來確定。例如,電子商務網站與返利網合作時,首先考慮的是合作的回報。
5、客戶價值指數:
顧客價值通常由三部分組成:歷史價值(過去消費)、潛在價值(主要從用戶行為考慮,以RFM模型為主要衡量依據)、附加價值(主要從用戶忠誠度、口碑推廣等方面考慮)。這里,客戶價值指標分為總體客戶指標和新老客戶價值指標。
這些指標主要從客戶貢獻和購置成本兩個方面來衡量。例如,我們使用訪客數量、訪客成本和從訪客到訂單的轉換率來衡量總體客戶價值指數。除了上述考慮之外,老客戶價值的衡量更多的是基於RFM模型。
(4)電商要搜集哪些數據擴展閱讀:
電子商務中使用分析數據的優點:
數據分析體系建立之後,其數據指標並不是一成不變的,需要根據業務需求的變化實時的調整,調整時需要注意的是統計周期變動以及關鍵指標的變動。
一般來說,單個數據索引的分析並不能解決這個問題,而且每個索引都是相互關聯的。將所有索引編織成一個網路,並根據具體需要找到每個數據索引節點。當用戶在電子商務網站上有購買行為時,他們會從潛在客戶轉變為網站的價值客戶。
電子商務網站一般將用戶的交易信息,包括購買時間、購買商品、購買數量、支付金額等信息存儲在自己的資料庫中,因此,這些客戶可以根據網站的運營數據來分析自己的交易行為,估計每個客戶的價值以及為每個客戶拓展營銷的可能性。
參考資源來源:
網路-電子商務數據分析
『伍』 電商數據分析要掌握哪些數據指標
【導讀】在電商行業當中,通常涉及到六大部門,且各個部門當中,業務框架以運營為導向。那麼,在電商數據分析中,我們需要掌握哪些數據指標呢?今天就跟隨小編一起來了解下吧!
運營模塊
運營的主要職責是達成銷售目標,同時控制運營成本。所以在這一模塊我們主要關注三個數據指標:業績達標率、業績增長率、銷售利潤額。這三個指標非常好理解,主要是用來綜合評估運營水平。
商品模塊
這一模塊主要涉及兩個職能,商品企劃和商品運營。
商品企劃的主要職能是在一個銷售周期內,對商品的品類、價格帶、風格、銷售進度進行整體把控,避免使用單一產品沖業績。
商品運營的主要職能是負責商品的上架、入庫以及主推策劃,通常流程是:測款-養款-爆款-返單。當然,一個店鋪也不能打造過多的爆款,爆款的增多會損害品牌調性,到這一旦折扣下降就會引起消費者流失的局面。
市場模塊
市場模塊是僅次於運營的第二大模塊,同時又和運營的工作密不可分。主要包括市場推廣投放、會員維護、活動包裝等等。
其中,推廣是一個店鋪的重中之重,也是我們數據分析的主要對象,推廣包括包括付費和免費兩種渠道,付費渠道比如我們熟知的直通車、鑽展等等,免費推廣如微博、貼吧等等。定時的進行會員維護會促進會員沉澱,活躍的會員可以有效的節省推廣費用。
視覺設計模塊
這部分模塊中,我們主要分析的還是店鋪流量的漏斗轉化路徑。主要涉及的包括:頁面邏輯、標簽分類、主推商品。這部內容對應的就是我們常說的流量分析,分析客戶的訪問路徑,並結合漏斗模型,看看那部分的轉化對最終的轉化率影響最大並進行優化。
關於電商數據分析要掌握哪些數據指標,小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『陸』 做電商要留意哪些數據
1、用戶獲取成本
如果你經營著一個電商企業,但是卻不知道每天有多少用戶登陸你的網站,登陸用戶和完成購買用戶之間的比例是多少,以及吸引用戶的成本是多少,那麼你在這個行業不會存活太長時間。搜索引擎優化是獲取用戶的一個好方法,但是僅僅做好搜索引擎優化還不夠。有時為了吸引更多用戶,你必須在金錢上有所付出,而且你必須清楚的知道哪種方法最能吸引用戶。即使在你不得不拒絕用戶的時候,你也清楚地知道拒絕用戶的成本。我們在TuneBash就是這樣收集並分析用戶數據的,在電商領域有這樣一句話:“如果你不能分析數據,你就不能控制流量。”
2、未完成付款的訂單
通過努力工作,你將用戶吸引到了你的網站上。你開始更辛苦的工作,為用戶提供他們想要購買的產品。用戶們點下了“現在購買”的按鈕,然後被重新定向到付款頁面。然後用戶突然放棄了購買,到底發生了什麼?通過分析未完成付款的訂單,能讓你了解到用戶為何最終放棄購買。未完成付款或是用戶放棄購買的訂單,是你應該進行追蹤和分析的數據。
3、訪客價值
平均每個訪客為你帶來多少營收?如果你知道這個確切的數字,你就能將吸引網頁流量的成本設定在一個合理的水平上。並且,你能夠通過增加購買轉化率和消費者價值來提供這個數字。
4、 終身價值
在一段時間內,每個消費者的終身價值以及他們的流量源是一個重要的數據。你能夠很輕松地為一個產品設計出推廣計劃,並將它賣給一個消費者。但是當消費者數量眾多的時候,你又將如何設計出一個優秀的市場營銷計劃呢?而且你還要同時顧及到新增消費者和舊有消費者,讓他們對現在和未來有可能出現的產品產生興趣。
5、流量
很顯然你希望那些正在尋找你的網站的消費者能夠來到你的網站購物,為你的網站增加流量。但那些並不是在可以尋找你的用戶,同樣不可以忽視。他們也許正在網上尋找某一種商品,而你恰好正在銷售這種商品,這時你要做的就是將這部分用戶吸引過來。用戶流量是最能為你帶來收入的因素。
6、 投資回報率
很多在線企業開始在網上投放廣告,但是他們卻並不關注投放廣告的投資回報率。通過分析在線廣告的投資回報率,你可以知道哪些渠道的廣告效果最好,哪些渠道效果不盡如人意,應該不再使用。另外,你還可以對多支廣告的效果進行分析,以便在最好的渠道上投放效果最好的廣告。
7、購買渠道
除了大家都在分析的CPA(每次購買成本)之外,還要分析用戶的購買渠道。了解用戶在哪裡找到了我們,並進入購買程序。這一點十分重要。如果不能夠很好的對此數據進行分析,你就無法對用戶的購買轉換行為進行優化和提高。
8、移動設備訪問比率
如果現在你還沒有針對移動設備進行優化的網頁,那你就有大麻煩了。很多公司每個月都會針對移動網頁使用情況製作報告,我們驚訝地發現,在所有訪問我們的網站用戶中,接近20%來自智能手機和平板電腦等移動設備。因此你應該分析一下有多少用戶在使用移動設備瀏覽你的網頁,為所有移動設備創造一個優秀的瀏覽和購物體驗。
『柒』 電商數據分析指標都有哪些該如何進行分析
此文是對最近學習的電商相關知識點做一個鞏固
傳統零售利用二八法則生存,電商靠長尾理論積累銷售。
傳統零售是小數據,電商是大數據。
傳統零售是「物流」,零售過程就是商品的流動;電商是「信息流」,顧客通過搜索、比較、評論、分享產生信息,達到購買的目的。
傳統零售注重體驗感,電商注重服務和效率。
傳統零售是做加法,電商是做乘法。傳統零售是通過一家家店擴大影響力,電商通過資金的投入迅速搶占市場。
傳統零售的主要成本是房租和人工成本,電商的主要成本是物流和營銷成本。
總結:電商和傳統零售雖有千萬種差別,但總歸都是零售,融合是二者註定的趨勢,即現在火熱的新零售。
傳統零售的數據主要是進銷存數據、顧客數據和消費數據。電商的數據卻復雜得多,數據來源渠道也很多樣化
電商數據來源廣泛,常規的流量數據、交易數據、會員數據在品牌的交易平台都有提供。一些第三方網站也提供數據源及分析功能。
1、網路統計:包括流量相關的網站統計、推廣統計、移動統計三部分內容。分析內容包括趨勢分析、來源分析、頁面分析、訪客分析、定製分析和優化分析。
2、谷歌分析:包括流量分析工具、內容分析、社交分析、移動分析、轉化分析、廣告分析幾部分內容。
3、Crazy egg熱力圖:主要特色是對頁面熱點追蹤分析的熱力圖。
4、CNZZ數據專家(友盟):包括站長統計、全景統計、手機客戶端、雲推薦、廣告管家、廣告效果分析和數據中心等。
還有一些無需埋點監測數據的產品,如GrowingIO、神策數據、諸葛io等。
以下為用思維導圖進行梳理的電商數據分析指標,總共包括六大類
對訪問你網站的訪客進行分析,基於這些數據指標可以網頁進行改進
這里需要注意兩個點
1)影響因素不同:UV 價值更受流量質量的影響;而客單價更受賣的貨的影響;
2)使用場景不同:UV 價值可以用來評估頁面 / 模塊的創造價值的潛力;客單價可以用來比較品類和商品特徵,但一個頁面客單價高,並不代表它創造價值的能力強,只能得出這個頁面的品類更趨近於是賣高價格品類的。
如果網站是為了幫助客戶盡快完成他們的任務(比如:購買,答疑解惑),那麼在線時長應當是越短越好;如果希望客戶一同參與到網站的互動中來,那麼時間越久會越好。所以,分析在線時長是否越長越好,要根據產品定位來具體分析
從注冊到成交整個過程的數據,幫助提升商品轉化率。
對於一個新電商來說,積累數據,找准營運方向比賣多少貨,賺多少錢更重要。這個階段主要 關注流量指標 ,指標如下:
對於已經經營一段時間的電商,通過數據分析 提高店鋪銷量 就是首要任務。此階段的重點指標是 流量和銷售指標 ,指標如下:
對於已經有規模的電商,利用數據分析 提升整體營運水平 就很關鍵。重點指標如下:
數據指標分為追蹤指標、分析指標和營運指標,營運指標就是績效考核指標。一個團隊的銷售額首先是追蹤出來的,其次是分析出來的,最後才是績效考核出來的。銷售追蹤自然是按天、按時段說話,分析一般是以周和月為單位,績效考核常常是以月為主、以年為輔。
執行人員側重過程指標,管理層側重結果指標。對於數據分分析人員來說要學會根據職位提供不同的數據。
1、無流量不電商,對於流量分析,我們常用漏斗圖來做分析,幾乎每個流量的細分都可以用到漏斗圖。
2、漏斗圖就是一個細分和溯源的過程,通過不同的層次分解從而找到轉化的邏輯。
3、漏斗圖的弱點,就是反應一條轉化路徑的形態,我們可以稍加修改實現漏斗圖的對比功能。
1、流量的質量分為質和量兩方面,只有質沒有量的流量是沒有多少實際價值的,流量的質體現在不同的營銷目的上,例如獲得點擊、注冊、收藏、購買或者獲取利潤的目的。
2、可以通過四象限分析圖來對比分析流量的質量。下圖是針對購買的轉化率和流量的四象限圖,其中第一象限的流量應該是高質量的,流量和轉化率均高於平均值;第二象限渠道的流量轉化率高,但量不大,通過搜索來的流量大部分屬於此類;第四象限流量屬於質低量高,站外購買的流量這種情況比較多;第三象限屬於質低量低的雙低流量,不用特別維護,任其發展即可。
3、圖中的Y軸可以根據具體的分析目的替換成點擊率、注冊率、收藏率、ROI(單元產出)等進行對比分析。
四象限分析圖中,X軸、Y軸、分析對象都可以根據不同的目的進行替換。
4、散點圖的四象限分析可以結合趨勢,或者演變成四象限氣泡圖,氣泡圖的大小為ROI,這種四象限圖信息量更大。
1、電商的銷售針對比傳統零售復雜很多,主要復雜在流量的多層次多渠道上,互聯網的好處是幾乎能將用戶的每個動作記錄下來,然後我們從中找到關鍵點進行診斷即可。下圖,是一個類似杜邦分析的圖,從值(圖中紅色)和率(圖中藍色)兩個方面,訂單、新客、老客三個維度將銷售額拆成五個層次,每個層次間具有加或乘的邏輯關系。
2、銷售額是一個結果指標,圖中的20個指標是過程指標,每個指標的變化都會影響最終的銷售額,基本都是正相關。(折扣和銷售額的關聯會稍微復雜一些)
3、通過上圖,使用對比、細分的原則分析可以判斷出哪兒些指標變化對銷售額產生了影響。
參考書籍為《數據化管理——洞悉零售及電子商務運營》
『捌』 電商需要掌握的數據分析要素有哪些
1. 店鋪的點擊量數
這是最能分析一個店鋪運營結果的數據。一家銷量高、推廣效果好的店鋪,通常點擊率都非常高,這和最後店鋪的營業額有直接關系,如果點擊率不高,可以從這個數據中獲取,從而分析原因,進而可以作為改善運營、提高轉化率的一種方式。
2. 訪客分析
只有全面分析客戶,才能了解他的價值,進而進行有針對性的營銷。需要注意以下幾點:1。區域比例訪客比較分析產品類別中搜索度較高的三個詞,快速找出客戶所在位置,完美投遞。還可以分析主要客戶群,根據客戶群准確定位,做好客戶需求。
3. 直通車公式分析
賣家可以通過直通車更准確的分析網店的數據,然後進行合理的調整。數據可以從以下幾個方面進行分析:1 .轉化率點擊轉化率=總交易量/點擊量X100 %;2.投入產出比投入產出比=交易總額/成本;3.平均點擊成本平均點擊成本=成本/點擊量;商家可以很好的利用這些方面的數據分析來准確的分析直通車數據。當賣家利用直通車做好對網店的流量、訪客、各種數據的分析,就能讓自己的網店運營更精準,銷量也會穩步增長。
關於電商需要掌握的數據分析要素有哪些,環球青藤小編今天就先和您分享到這里了。如若您對互聯網營銷有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於文案優化、廣告營銷文案寫作的方法及素材等內容,可以點擊本站的其他文章進行學習。