① 大数据技术主要学什么课程
大数据技术需要学习的课程有以下几个:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等键携。
② 大数据技术是学什么的
大数据技术体系太庞杂了,基础技术覆盖数据采集、数据预处理、分布式存储、NOSQL数据库、多模式计算(批处理、在线处理、实时流处理、内存处理)、多模态计算(图像、文本、视频、音频)、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。另外大数据应用领域广泛,各领域采用技术的差异性还是比较大的。
人工智能是势不可挡的发展趋势,大数据技术又是人工智能的重要支撑,随着未来5G的发展大数据科学将成为引领人工智能技术、物联网应用、计算机科学、数字经济及商业发展的核心。
③ 为破局而生,情报分析师决胜大数据
大数据时代,谁拥有数据,谁也就拥有财富。
数据服务产业的发展,提高数据的应用水平,所离不开的关键核心都是专业的情报分析师。
通常所说的大数据分为三种,企业数据、公权机构数据和开源网络数据。前两种可供挖掘和应用的价值有限,目前世界上各国所重视的都是开源网络数据。
挖掘大数据价值,获取目标对象(人物、事件、机构、项目等)精确可靠的信息,需要经由情报分析师充分利用自身的技术、方法、经验和手段,建立和理清调查任务内在的逻辑关系,通过综合研判,才能从纷繁冗余的数据中找出价值。
大数据是座挖不完的“钻石矿”,随着科学技术的发展,每个人的生活都与大数据息息相关,同时随着国家政策对于大数据等前沿技术的愈发重视,大数据行业已逐步形成了一个万亿级别的市场。
截至2018年底,致力于打造“中国数谷”的贵州省会贵阳正推动大数据与相关领域深度融合,全国人大代表、贵阳市市长陈晏表示,贵阳建成大数据产业园10个,大数据企业1632家,全年企业主营业务收入1000亿元人民币。在推动大数据与实体经济、社会治理等方面,贵阳市“融”出了新动能、新前景、新生活、新效率。贵阳市政府数据已实现100%共享交换,向社会免费开放618余万条数据。
基于大数据对各个行业的深入影响,近几年,美国、欧盟、日本等主要发达经济体都积极推进各自的大数据战略。2009年,美国科学家委员会(NSTC)就发布了《开发数字数据的威力》报告,初步提出发展大数据的框架,奥巴马政府亦对大数据行业大力支持,帮助美国取得世界领先地位。参考《大数据白皮书(2016)》,2016年全球大数据核心产业规模约为300亿美元,预计2020年有望达到近600亿美元。
中国亦将大数据视为新经济的重要支撑。2014年“大数据”首次出现在《政府工作报告》,奠定了行业快速发展的政策基础。2017 年,工信部印发了《大数据产业发展规划(2016-2020 年)》,全面部署“十三五”时期大数据产业发展工作。发改委、工信部及农业部、运输部等部委先后颁布相关后续政策,推动大数据产业发展。预计未来将有更多部门出台相应具体政策,推动大数据行业的发展。
根据中国信通院数据显示,2017年中国大数据产业规模(包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务)为4700亿元人民币,同比增长30%,且预计2020年这一规模有望赶超1万亿,年均复合增速近30%。其中,大数据核心产业规模2017年为234亿元,同比增长39%,预计2018年为329亿元。
目前中国金融数据体量位居全球第一,其中金融行业数据量是数据的重要贡献和使用机构,互联网金融占据相当大的比重,活跃的交易账户和交易事项为金融领域贡献了大量可供挖掘的有价数据。
受互联网金融的影响,金融行业大数据也迎来了迅速发展,大数据在金融行业正实现全面普及应用。大数据在金融行业的应用,除了传统的风险管理、运营管理及业务创新外,近年金融行业大数据应用呈现新的趋势,主要包括高频金融交易、小额信贷、P2P放款审核、客户管理、精准营销等。
随着大数据发展和应用的持续推进,未来金融大数据行业中的机构和企业将围绕建立新的金融环境而竞争,主要表现在围绕生态圈、战略和产品三个层面的竞争,并由此确定金融行业企业的市场地位及竞争力。因此,金融机构、互联网企业都不会局限于某一个层面的发展,更倾向于多维度、多层面的布局。
此外,A股上市公司在大数据产业的各个领域布局广泛,目前A股大数据概念板块中,有118个标的,但是在各个子版块中有较强变现能力的龙头企业的数量却很少,对于一些概念炒作,没有核心技术能力的公司,很容易因为一些市场环境的变化,产生大幅下跌,让投资者蒙受损失。
由此可见,大数据进一步发展急切需要综合解决方案提供商,专注于利用当代最先进的IT技术推动企业和政府部门在管理和商业模式上的创新发展,提供综合解决方案,包括运营支撑、大数据、移动互联网解决方案等。最终形成电信+政府+金融的大数据全面布局。
内生外延布局金融大数据,业务协同发展。在公共安全、运营商等传统大数据业务将大数据平台和应用技术研发落地,继而可将经验快速复制到金融、农业等其他领域。形成强协同效用。
大数据是未来的发展趋势,现今人人也都可以谈一点大数据,任何行业都可以直接间接的与大数据相关联,但是真正专业应用大数据技术的公司却也屈指可数,更难辨别出真正具有大数据业务变现能力的企业。
身处信息爆炸的时代,要想透过大数据去发现背后的真相,也并不是一件易事。
术业有专攻,作为企业方需要有意识培养大数据技术和情报分析师等专业人才,而作为个人也要有意识培养情报分析师思维,如此才能真正将大数据为己所用,如此也才能在未来市场的角逐中不被淘汰出局。
未来,每一个人都离不开对于数据的分析。
④ 数据科学与大数据技术专业怎么样 好就业吗
有很多的同学是非常的想知道,数据科学与大数据技术专业怎么样,好不好就业呢,我整理了相关信息,希望会对大家有所帮助!
1 数据科学与大数据技术专业好不好
专业还是不错,但这个专业对数学与物理的功底要求不是一般的高。物理必须非常好,数学是计算,物理是思维与想象的严密。如果高中数学、物理不好,还是谨慎报考。否则进去后,听不懂,作业做不了,最后挂课很多,毕业证都没了。因此,高中数学不好,物理不好的,一定要小心报考。
另外,从对数学和物理的要求这么高看,相对而言,高等级的学校(如985、211或双一流)开设的会得心应手,而一些低端的学校,可能差一些;尤其是民办(独立)学院,可能师资都成问题;但这些低端的学校,在宣传上可能比高端学校做得好,罗列一大堆证书和获奖,可能是都是化钱买的。
报考学校时,要多比较,看看有没有硕士点、博士点。如果都没有的,那相对差很多,毕竟这是一个高智商的专业。
1 数据科学与大数据技术专业好找工作吗
大数据被誉为“21世纪的新石油”,是国家战略性资产,是21 世纪的“钻石矿”。麦肯锡全球研究所把大数据看作“下一个创新,竞争和生产力前沿”。2013年被称为大数据元年。短短几年,大数据已渗透到社会方方面面。
人工智能是势不可挡的发展趋势,大数据技术又是人工智能的重要支撑。大数据科学将成为引领人工智能技术、物联网应用、计算机科学、数字经济及商业发展的核心。
1 数据科学与大数据技术专业就业方向
大数据应用开发工程师
此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,末后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。
大数据分析师
此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是很抢手的大数据人才,他们所从事的是热门的分析师工作。