㈠ 最常用的大数据分析方法有哪些
1、对比分析对比分析法不管是从生活中还是工作中,都会经常用到,对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。
在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。
2、漏斗分析
转化漏斗分析是业务分析的基本模型,最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。
其中,我们往往关注三个要点:
①从开始到结尾,整体的转化效率是多少?
②每一步的转化率是多少?
③哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?
3、用户分析
用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。
可将用户活跃细分为浏览活跃,互动活跃,交易活跃等,通过活跃行为的细分,掌握关键行为指标;通过用户行为事件序列,用户属性进行分群,观察分群用户的访问,浏览,注册,互动,交易等行为,从而真正把握不同用户类型的特点,提供有针对性的产品和服务。
4、指标分析
在实际工作中,这个方法应用的最为广泛,也是在使用其他方法进行分析的同时搭配使用突出问题关键点的方法,指直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等。在选择具体使用哪个基础指标时,需要考虑结果的取向性。
5、埋点分析
只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。
通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。
㈡ 大数据应用须解决三大关键点
大数据应用须解决三大关键点
大数据应用的关键点是数据来源、产品化和价值创造;数据资源分布不均,大数据应用在数据密集领域更易获得突破;须对不当的行业管理模式进行改革,以促进大数据在已有各个行业中应用。
大数据贵在应用。当前,在国家层面,国务院出台《促进大数据发展行动纲要》;在地方层面,大数据被作为区域发展战略引擎;在企业层面,各类大数据概念公司方兴未艾、蓬勃发展。我们独关注大数据应用,关注数据从哪里来、数据怎么用、成果谁买单,也就是数据来源、产品化和价值创造三个关键点。一个好的大数据应用,从技术上可能很复杂,但从业务模式上应当简单、直白、管用。我们还关注,是否存在若干"数据密集型"行业或领域,大数据应用在这些领域可能更容易开展。在产业政策方面,我们关注作为新兴业态的大数据,过去屡试不爽的做法,如给地、给钱、给项目等,是否还会继续有效?
大数据应用的三个关键点
国务院《促进大数据发展行动纲要》(简称《大数据纲要》)将大数据定位为"新一代信息技术和服务业态",赋予大数据"推动经济转型发展""重塑国家竞争优势""提升政府治理能力"的战略功能,并将数据界定为"国家基础性战略资源"。在应用方面,《大数据纲要》在公共领域提出许多发展方向,如宏观调控科学化、政府治理精准化、商事服务便捷化、安全保障高效化、民生服务普惠化;在产业层面,主要按行业领域划分为工业大数据、新兴产业大数据、农业农村大数据、万众创新大数据,以及大数据产品体系和大数据产业链。这些方向,只是大数据应用的潜力和空间,能不能应用起来,能不能发挥作用,还得看有没有可行模式和实际效果。无论是在公共领域还是在产业层面,大数据应用都离不开数据来源、处理技术和方法、创造价值的模式,这是我们关注的重点。概括来说,需要回答下面三个看似简单、却是关键的问题。(一)数据从哪里来关于数据来源,普遍认为互联网及物联网是产生并承载大数据的基地。互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据金矿,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,如房地产交易、大宗商品价格、特定群体消费信息等。从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,也是当前在国内比较常见的应用资源。在国内还有一类是政府部门掌握的数据资源,普遍认为质量好、价值高,但开放程度低。《大数据纲要》把公共数据互联开放共享作为努力方向,认为大数据技术可以实现这个目标。实际上,长期以来政府部门间信息数据相互封闭割裂,是治理问题而不是技术问题。面向社会的公共数据开放愿望十分美好,恐怕一段时间内可望不可及。在数据资源方面,国内"小数据""中数据"应用并不充分,试图一步跨入大数据时代,借机一并解决前期信息化过程中没能解决的问题,前景并不乐观。另外,由于中国互联网公司业务主要在国内,其大数据资源也不是全球性的。数据从哪里来是我们评价大数据应用的第一个关注点。一是要看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是"富矿"还是"贫矿",能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,如果一个应用没有可靠的数据来源,再好、再高超的数据分析技术都是无本之木。(二)数据怎么用数据怎么用是我们评价大数据应用的第二个关注点。大数据只是一种手段,并不能无所不包、无所不用。我们关注大数据能做什么、不能做什么,现在看来,大数据主要有以下几种较为常用的功能。追踪。互联网和物联网无时无刻都在记录,大数据可以追踪、追溯任何一个记录,形成真实的历史轨迹。追踪是许多大数据应用的起点,包括消费者购买行为、购买偏好、支付手段、搜索和浏览历史、位置信息,等等。识别。在对各种因素全面追踪的基础上,通过定位、比对、筛选,可以实现精准识别,尤其是对语音、图像、视频进行识别,使可分析内容大大丰富,得到的结果更为精准。画像。通过对同一主体不同数据源的追踪、识别、匹配,形成更立体的刻画和更全面的认识。对消费者画像,可以精准推送广告和产品;对企业画像,可以准确判断信用及风险。提示。在历史轨迹、识别和画像基础上,对未来趋势及重复出现的可能性进行预测,当某些指标出现预期变化或超预期变化时给予提示、预警。以前也有基于统计的预测,大数据大大丰富了预测手段,对建立风险控制模型有深刻意义。匹配。在海量信息中精准追踪和识别,利用相关性、接近性等进行筛选比对,更有效率地实现产品搭售和供需匹配。大数据匹配功能是互联网约车、租房、金融等共享经济新商业模式的基础。优化。按距离最短、成本最低等给定的原则,通过各种算法对路径、资源等进行优化配置。对企业而言,提高服务水平、提升内部效率;对公共部门而言,节约公共资源、提升公共服务能力。当前许多貌似复杂的应用,大都可以细分成以上几种类型。例如,贵州推行的"大数据精准扶贫项目",从大数据应用角度,通过识别、画像,可以对贫困户实现精准筛选和界定,找准扶贫对象;通过追踪、提示,可以对扶贫资金、扶贫行为和扶贫效果进行监控和评估;通过配对、优化,可以更好地发挥扶贫资源的作用。这些功能也并不都是大数据所特有的,只是大数据远远超出以前的技术,可以做得更强大、更精准、更快、更好。(三)成果谁买单成果谁买单是我们评价大数据应用的第三个也是最后一个关注点。道理很简单,不创造价值的应用不是好应用。我们关注大数据的应用是否实实在在地提升了能力、改善了绩效。如果大数据用于自身的产品设计、营销推广、资源配置,那就看企业竞争力是不是提升了,看企业最终是不是比以前更赚钱了。如果大数据用于为第三方提供服务,那就看是不是有人愿意付费、愿意持续付费。但如果是用于公共领域,还要看政府或公共部门的付费值不值,不仅仅是从出资方的视角看值不值,还要从老百姓的视角看值不值。当我们面对一项大数据应用时,只要简单问一问上面三个问题--数据从哪里来、数据怎么用、成果谁买单,就能揭开许多"伪装"。当然,如果经得起上述"大数据三问",也并非一定算得上优秀,却也离优秀的大数据应用不远了。寻找数据密集型领域既然大数据被视为一种资源,那就要考虑资源分布的问题。一般而言,资源分布是极不均匀的,如水、矿产、耕地、能源等自然资源;人力资源和知识的分布更是不均。大数据是否也存在分布不均的问题?发展大数据产业是否真的能弯道超车?这些问题值得深入思考。与可以探测的自然资源不同,数据资源分布难以定位和刻画。不过,可以用大数据人力资源分布状况来间接反映大数据应用在地区、行业间的差异,哪些行业、哪些地区大数据人力资源密集,这些行业和地区就可以看作是数据密集的。我们对两家主流招聘网站"前程无忧"和"智联招聘"2014年下半年以来发布的招聘信息进行筛选,得到两家网站两年来共发布相关信息涉及企业22.7万家,职位100.7万个,数据量确实足够"大"。通过分地区、分行业进行汇总分析,结果显示大数据人力资源分布极不均匀,各地区、各行业差异极大。不过,确切来说,通过招聘网站反映的是人才需求情况,并不是严格意义上的人力资源存量分布情况,但这两者是紧密相关的。从大数据相关岗位工作地来看,北京、广东、上海三地高度密集,遥遥领先于其他地区。三地相加,发布招聘信息企业数在两家网站占到52.35%和47.48%,职位数占到61.23%和56.74%。可以推测,大数据人力资源的半壁江山都集中在这三个地方,这与我们平时的直观感受是高度一致的。在这三个地方之外,我们关心是不是地方政府重视大数据产业、将大数据作为区域经济发展引擎,就可能促进人力资源集聚,就可能超越与自己相似经济发展水平的其他地区。从数据反映情况看,至少目前还看不到这样的结果,这揭示出人力资源结构是后发地区发展大数据产业最需要弥补的短板和最难克服的困难。改变一个地方人力资源构成的难度要远远大于改变地面建筑面貌,要么需要一个长期的过程,要么需要一个独特的制度。即便在同一省份内,大数据人力资源分布也极为不均。例如在广东,单深圳一市就大体占到了全省的一半。再加上广州,竟然能够达到九成。其他地方,即使经济实力不俗,但与深圳、广州相比,在大数据人力资源方面相差甚远。这再次表明,大数据人力资源分布是极不均匀的。显然,大数据人力资源密集地区发展大数据产业的基础要优于人力资源贫瘠的地区。从城市排名看,北上深广可以视作大数据人力资源需求密集的一线城市,杭州、南京、成都、武汉、西安等可以看作二线城市。大数据人力资源分布与城市经济实力、活力乃至房价水平都是大体一致的。从行业分布看,对大数据人力资源的需求分布更不均匀,主要集中在互联网、信息技术及计算机相关行业。这充分说明了大数据是互联网或IT产业的一部分,是在原有基础上的新发展。这些行业是典型的"数据密集型"行业,是大数据产业发展的摇篮。金融是另一个特别重要的"数据密集"领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。除此之外,电信、专业服务(如咨询、人力资源、财会)、教育培训、影视媒体、网络游戏等,相对而言也是当前数据较为密集的行业。《大数据纲要》几乎面面俱到地对所有行业和领域都规划了大数据应用的广阔前景,但数据资源分布极为不均,在"数据密集"领域的大数据应用,取得市场成功的可能性较大。大数据需要什么样的产业政策大数据应用需要什么样的产业政策?从应用的角度来看,大数据并非一个全新的产业,而是与已有产业融合,对已有模式的改造、升级和替代。制约大数据发展的往往并不是大数据本身,而是大数据所应用的行业和领域原本存在的问题,如行业管制、行政垄断、要素不能自由流动,等等。因此,促进大数据发展,用给地、贴钱、上项目的方法,并不能解决根本问题。要从大数据应用领域角度,对不当的行业管理模式进行改革,对既有利益格局进行调整,使大数据应用具备必要的条件。即使在企业内部,大数据应用也不仅仅是个技术问题,而是涉及业务流程重组和管理模式变革,是对企业管理能力的一个考验。金融、电信、教育、影视媒体等"数据密集型"行业,既是大数据应用潜力巨大的领域,也是迫切推进行业改革的重点领域。另一方面,大数据的应用也可以为行业改革提供技术支撑,能以更有效的技术路线实现行业发展目标。
大数据应用需要的产业政策其实就是市场经济下各个行业发展所应有的政策,如放开准入、公平竞争、减轻企业负担、消除企业所有制歧视、消除企业规模歧视,等等。只有在一个开放的产业环境中,大数据才能在这些产业得以有效运用。一个地方若要在金融、医疗、教育等领域大力推动大数据运用,最管用的政策就是对这些行业进行有力的改革。
㈢ 如何正确认识大数据的价值和效益
1、数据使用必须承担保护的责任与义务
我国数据流通与数据交易主要存在以下问题:数据源活性不够,数据中介机构还处于起步阶段;多源数据的汇集技术尤其是非结构化数据分析技术滞后;缺乏熟悉不同行业并掌握在特定领域使用数据技术的人才。
数据的价值在于融合与挖掘,数据流通、交易有利于促进数据的融合和挖掘,搞活数据从而产生效益。数据共享开放、流通交易和数据保护及数据安全对数据技术提出严峻挑战,对法律的制定及执行提出了很高要求。为此,数据使用必须承担保护的责任与义务。
㈣ 让大数据介入新农业
让大数据介入新农业
为充分发挥大数据在农业农村发展中的重要功能和巨大潜力,有力支撑和服务农业现代化,按照国务院《促进大数据发展行动纲要》精神,农业部近日印发了《关于推进农业农村大数据发展的实施意见》,全面部署农业农村大数据发展工作。
《意见》强调,要按照“着眼长远、突出重点、加快建设、整合共享”要求,坚持问题和需求导向,坚持创新驱动,加快数据整合共享和有序开放,充分发挥大数据的预测功能,深化大数据在农业生产、经营、管理和服务等方面的创新应用,为政府部门管理决策和各类市场主体生产经营活动提供更加完善的数据服务,为实现农业现代化取得明显进展的目标提供有力支撑。
我国农业农村数据历史长、数量大、类型多,随着信息化和农业现代化同步推进,农业农村大数据与农业产业全面深度融合,正成为现代农业新型资源要素。与此同时,农业农村数据长期存在底数不清、核心数据缺失、数据质量不高、共享开放不足、开发利用不够等问题,亟待解决。《意见》指出,要坚持“问题导向、应用驱动,创新机制、整合资源,先易后难、逐步推进,上下联动、社会众筹”原则,立足我国国情和现实需要,利用5-10年时间,努力实现农业数据的有序共享开放,初步完成农业数据化改造。
《意见》明确了农业农村大数据发展和应用的五大基础性工作和十一个重点领域,即夯实国家农业数据中心建设、推进数据共享开放、发挥各类数据的功能、完善农业数据标准体系、加强数据安全管理等五大基础;突出支撑农业生产智能化、实施农业资源环境精准监测、开展农业自然灾害预测预报、强化动物疫病和植物病虫害监测预警、实现农产品质量安全全程追溯、实现农作物种业全产业链信息查询可追溯、强化农产品产销信息监测预警数据支持、服务农业经营体制机制创新、推进农业科技创新数据资源共享、满足农户生产经营的个性化需求、促进农业管理高效透明等11个重点领域。
为确保农业农村大数据发展扎实推进、取得实效,《意见》对实施进度作出安排,同时要求各级农业部门切实落实责任、推进完善基础设施、创新投入和发展机制、提升科技支撑能力、健全规章制度,形成覆盖全面、业务协同、上下互通、众筹共享的农业农村大数据发展格局。
㈤ 如何利用工业大数据推动制造业转型
什么是工业大数据?
工业大数据,很难从内涵角度来作出一个定义,因为它涉及到很多各种各样的数据。但从外延角度来看,比较容易。
大体上是3+3,第一个“3”是指3个层面——企业,企业上面的供应链、产业链和生态链,以及在这上面的行业管理和宏观经济。第二个“3”是指每个企业都有的3个过程——生产,使用,以及发展中的经营效益,所以,“3+3”基本上把工业大数据的脉络圈起来了。
从企业的角度看,工业大数据是在一个企业的设计、创新、生产、经营和管理决策过程产生、使用和转型升级过程需要的信息之和。所以最小的圈是企业,一个企业从开始到生产线到设计、到工艺过程、到人,一直到管理、决策、市场、服务,像这样的环节都在使用。
从供应链、产业链和生态链的角度来看,工业大数据是供应链、产业链和生态链产生、使用和需求的各类信息之和。这三个链之间很难一刀断开,因此,我也是从一个概念来看。所以,制造业也好、工业企业也好,整个过程是一个链环周。这个链不仅是一个企业,更重要的是政府机构、研究机构,需要把控和研究如何追求制造业前两环的优化。所以我们看到了超越一个企业的生存、使用和发展需求的新工业数据。
从行业管理和宏观调控的角度来看,工业大数据是工业行业管理和宏观调控产生、使用和需求的各类信息之和。每一个行业的管理都需要工业大数据,在工业行业又生存了很多企业,做好工业数据管理需要这样一个链条,所以“3+3”构成了工业大数据的外延,每一个环节,使用的和需求的中间是交集,这样才对工业大数据的发展提供了基础。
小结
首先,3+3加起来的组合就是工业大数据;
第二,产生、使用和进一步发展的需求的工业大数据是不同的,是交集;
第三,进一步发展需求的大数据最大;
最后一句话最重要,工业大数据,工业是主体。
为什么要发展工业大数据?
同样是三个层面,从三个由小到大的层面,加上一个需求,来看一下工业大数据的作用和意义。
首先,从最小的层面——企业来看,工业大数据为企业全过程设计、创新、生产、经营、管理、决策服务,为企业的发展战略和目标的实现服务。
第二个层面,工业大数据服务于供应链的优化、产业链的完善、生态链的形成和优化。从供应链、产业链、生态链来看,不管是CSM的生产圈,还是一个特定产品制造过程的供应链,或是一个完整生产过程的分析,工业大数据都是为了它的形成和优化。
第三个层面,工业大数据要满足行业和宏观决策调控的实际需求,提高行业和宏观经济管理决策质量、能力。政府的行业管理对于供应链、产业链、生态链、商业链、价值链有着非常重要的作用,但是政府的宏观调控超越了这样的链环本身,我们要对经济发展面临的重大问题作出回应,甚至回答制造业如何来应对这样的问题。所以从这个行业来看重要的是行业发展战略,而到宏观调控的时候,不但要从行业的发展战略,还要从整个经济发展去看这些问题怎么解决?这就需要信息。
第四,从工业转型升级的需求看,工业大数据是为了一个个企业、行业、装备、工艺、生产线、供应链的转型升级服务。先进制造业、工业4.0、智能制造,以两化融合和智能制造为重点的中国制造2025,都是工业转型升级模式的未来方向。原来我们的3.0工业,是以装备和生产线为核心的自动化,而4.0的智能化是把这两个过程自动化和数据自动化结合在一起。
小结:
工业大数据的研究和实践要服务于加快制造业转型升级、提升工业竞争力;
这个目标要落实到企业创新、设计、生产、经营、管理、决策的每一个具体环节;
这个目标要落实到供应链全局优化、产业链和生态链的形成和优化的每一个具体环节;
这个目标要落实到工业行业管理和宏观经济调控决策的每一个实际需求。
工业大数据怎么推动制造业转型升级?
在回答怎么办之前,首先要知道存在着哪些主要问题:
1、在数据生成环节,主要存在跑冒滴漏和非标准的问题;
2、在数据利用环节,主要存在数据不足、质量不高、各个环节协同存在制度、核算、标准等大量障碍;
3、在发展需求环节,主要存在缺乏预见性、缺乏有效的模型和工具、缺乏制度和标准规范等问题。
要想建设好、应用好大数据,首先要解决这三个问题:
首先是建设,什么是建设?我记得三年前说过,把大数据作探矿、采矿、炼矿、用矿,实际上探矿和采矿就是建设好信息,可以从三个纬度四个方面来建设好信息。三个纬度首先是发现,然后才可以按照应用需求结合起来。第二要有制度,要有标准,要实现系统之间的互操作。同时我们还要发现、收集、组织,来提升系统性、完整性、及时性、准确性。这是建设好、运用好。
利用好有三个方面或者三个层次和若干个关键环节。由于时间关系就不再展开讨论了。
最后,要特别注重取得实效、最佳实践和理论研究。
1、要特别注重实效。因为今天的大数据,每一个环节的形成都有它的实效,这件事情从开始到做完以后,效果究竟是什么?有很多企业家,当你用大数据对你企业各个环节进行改善提升的时候,你首先第一条要把提高效率放在首位,这是关键,而且对于制造业来说,要永远把利润率放在最重要的位置。当然,工业大数据不能直接用钱来算,有的环节是企业老板在管理上、服务上提效,但是这个效果必须是可测量的,不管是定性的还是定量的。
2、要特别注重最佳实践。i5数控机床,从开始研发到今天位列智能数控机床试点领先的行列,花了十年的时间。为什么前面几年没有成功?就是因为数据缺失。缺什么数据?高端数控机床为什么长期被国外控制?数控机床的技术为什么那么长时间没有克服?因为不管是材料的发展,还是装备的发展,都没有数据,没有实践过程中的数据,它是发展不起来的。接下来是模型怎么建,也需要数据来支撑,但是原来由于高端数控机床都由国外来控制,我们没有数据。另外,它在这个过程里面还倡导商业模式,这个机床是按服务钥匙收费。所以它又变成了今天最新最热门的制造行业分享。这显然是一个最佳实践,这里面工业数据是极其重要的。
3、要注重理论的研究,注重方法、制度创新的研究。在这个过程中,需要对制造业发展的趋势、特征,工业大数据的内涵外延,工业大数据建设和利用的系统方法,工业大数据质量保证、协同发展、制度创新等等一系列问题进行研究。
㈥ 大数据在教学管理中的运用
大数据在教学管理中的运用
随着大数据时代的崛起,云数据时代的来临,大数据给各行各业的发展模式和决策带来前所未有的革新与挑战,教育行业同样不可避免。大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。
一、对“大数据”的理解《自然》杂志在2008年9月推出了名为“大数据”的封面专栏,讲述了数据在数学、物理、生物、工程及社会经济等多个学科扮演了愈加重要的角色。加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”大数据也称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为帮助企业更好经营决策的各种资讯,同时与大数据相关的数据存储、数据安全、数据分析等领域也都属于大数据范畴。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。“大数据”具有数据体量巨大,数据类型繁多,价值密度低,处理速度快的特点。二、“大数据”对教学的影响 法家思想的集大成者韩非子也有“世异则事异,事异则备变”的观点,足见教育是需要根据现实变化的。 在教育领域中,“大数据”除体现传统数据的所有宏观功能外,还能收集分析详尽的微观个性化数据,大数据的优势立显。传统数据诠释宏观、整体的教育状况;大数据用于调整教育行为与实现个性化教育;传统数据来源于阶段性的,针对性的评估,其采样过程可能有系统误差;大数据来源于过程性的,以第三方、技术型的观察采样的方式误差较小。传统数据分析所需要的人才、专业技能以及设施设备都较为普通,易获得;大数据挖掘需要的人才,专业技能以及设施设备要求较高,并且从业者需要有创新意识与挖掘数据的灵感而不是按部就班者。 大数据带来新一轮教育信息化的浪潮已然随着硬件的高速革新和软件的高度智能无法抗拒地推到了我们面前。作为新时期的教育管理者,唯有掌握良好的“大数据”技术,转变教育思想,及时利用“大数据”服务学校管理、改革教育教学,提高办学质量。 三、大数据教学管理模式 随着时代的发展,科技的日新月异,以往的教学管理模式正在慢慢退出历史舞台。这种以现代信息技术为支撑,“大数据”为载体的新型管理模式极大地实现了教育资源的共享与充分利用,促进了工作效率的提升,转变了工作效能,让工作更加具有时效性,科学性,及时性。1、大数据管理的模型 正如2014年全国教育工作会议提出的,今后一个时期我国教育管理的目标是“加快推进教育治理体系和治理能力现代化”,我国的教育管理模式将发生质的变革,大数据管理模型应运而生。 大数据支撑的教育管理模型:以“主体、对象、资源、目标”为核心要素,建立多级连通共享的教育云,构建教育管理复杂系统,利用云技术处理教育云端大数据,为教育公共服务机构、教师和学生提供全天候多终端个性化需求的教育资源服务、专业发展服务和综合素质发展服务,提升教育资源配置的合理性和公平性,提升教育决策科学化水平。 在教育管理中,人的因素是重要的教育数据,是一切教育数据的来源。教育资源的配置,首先要进行科学合理的资源基本分类:人才资源、财物资源、知识资源;教育内容、教育理论、教育方法、教育经验等,是教育资源配置中的隐性资源,却是根本资源;技术资源是大数据教育管理的生产力资源,教育技术尤其是教育信息技术、大数据、云技术的应用,是管理主体满足教育服务需要,合理配置教育资源的应用型资源。 2、大数据管理的运行策略 教育大数据管理是一个长远的伟大工程,从当前的教育信息化建设水平和面临的挑战综合考虑,还有相当长的路程要走。我们需要在思想上、理论上和实践上全面推进,迫切需要制订正确而长远的行动路线图如又图所示。 这是三个层级的运行策略:底层是大数据教育管理的基础建设教育云的建设,各区域应遵循国家教育数据标准,建设分布式教育数据中心(云)资源库+数据库+数据关系逻辑的建构,为云端教育教学资源配置提供基础硬件支撑,进而建设三层智慧平台智慧校园、智慧学堂(课堂)和智慧终端(尤其是移动终端)应用平台建设,同样作为基础层级的是教育资源的大数据挖掘对教育过程所产生的数据进行统计、分析、建模等处理,为教育管理决策提供数据应用;位于高层的是教育大数据管理的操作系统,从公共服务到学生个体发展,利用大数据进行教育资源的公平配置和个性化供给,推进教育发展与改革,使人人享有优质恰当的教育资源,促进教育的优质可持续发展,推进教育品牌建设和创新提升,形成高效绿色的教育文化。 四、大数据教学管理的优越性 用数据说话、用数据决策、用数据管理、用数据创新的数据文化正在成形,大数据时代已经来临。顺应大数据时代的发展,教育变革已经进入了一个新的阶段,教育领域将迎来一场前所未有的大变革。
大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。大数据带来的一系列变革,对新型创新人才的培养提出了更为迫切和现实的要求:日益强大的互联网、多媒体及概念软件、开源软件等为师生提供了更加自由、灵活的学习和探索空间,求知的视野被极大拓宽;日益频繁的师生活动及社会互动被大数据予以记录、分析和共享,教育环境的时空界限和信息隔阂得以打破,长期以来潜伏于数据之下的教育理论和规律将日益凸显和明朗,人才培养将更具灵活性和多样性;学习与生活、教育与社会不再被孤立,学生、学校与现实生活的体验更为接近,学生学习兴趣、学校办学动力将被大大激发