导航:首页 > 数据分析 > 当前数据库新技术有哪些

当前数据库新技术有哪些

发布时间:2023-03-26 13:24:08

『壹』 大数据技术有哪些

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapRece (EMR)、Apache Hive、Apache Pig、Apache Spark、MapRece、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

『贰』 目前流行的DBMS有哪些

目前流行的 DBMS(Database Management System,数据库管理系统)包括:

1. 关系型数据库管理系统(RDBMS):这是一种按照行和列的方式来存储和管理数据的 DBMS。常见的关系型 DBMS 有:

- Oracle
- MySQL
- Microsoft SQL Server
- PostgreSQL
- IBM DB2
- SQLite

2. 非关系型数据库管理系统(NoSQL):这是一种针对大数据、高并发、高可扩展性等方面设计的数据库。它们采用的数据模型不同于传统的关系型数据扮枝库的模型。常见的 NoSQL DBMS 有:

- MongoDB
- Couchbase
- Cassandra
- Redis
- HBase

3. 新型数据库管理系统:这是一些全新的数据库管理系统,它们采用了一些新的数据库架构和技术,包括图形数据库、列式数据库、内存数据库等。常见的新型 DBMS 有:

- Neo4j
- Vertica
- Google Bigtable
- Apache Ignite
- SAP HANA

不同的 DBMS 适用于不同的应用场景。在选择 DBMS 时,需要根据具体的需求和应用场景进行评估和选择。例如,如果需要处理大容局缺铅量、高速读写的数据,则 NoSQL 数据库可能更适合;而如果需要具有严格事务控制、复杂桐好查询的应用,则关系型数据库可能更适合。

『叁』 大数据的核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据版预处理、分布权式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

『肆』 数据库技术的发展趋势

下一代数据库技术的发展主流
针对关系数据库技术现有的局限性,理论界如今主要有三种观点 :
面向对象的数据库技术将成为下一代数据库技术发展的主流 部分学者认为现有的关系型数据库无法描述现实世界的实体,而面向对象的数据模型由于吸收了已经成熟的面向对象程序设计方法学的核心概念和基本思想,使得它符合人类认识世界的一般方法,更适合描述现实世界。甚至有人预言,数据库的未来将是面向对象的时代。
面向对象的关系数据库技术 关系数据库几乎是当前数据库系统的标准,关系语言与常规语言一起几乎可完成任意的数据库操作,但其简洁的建模能力、有限的数据类型、程序设计中数据结构的制约等却成为关系型数据库发挥作用的瓶颈。面向对象方法起源于程序设计语言,它本身就是以现实世界的实体对象为基本元素来描述复杂的客观世界,但功能不如数据库灵活。因此部分学者认为将面向对象的建模能力和关系数据库的功能进行有机结合而进行研究是数据库技术的一个发展方向。
面向对象数据库技术 面向对象数据库的优点是能够表示复杂的数据模型,但由于没有统一的数据模式和形式化理论,因此缺少严格的数据逻辑基础。而演绎数据库虽有坚强的数学逻辑基础,但只能处理平面数据类型。因此,部分学者将两者结合,提出了一种新的数据库技术——演绎面向对象数据库,并指出这一技术有可能成为下一代数据库技术发展的主流。
数据库技术发展的新方向
非结构化数据库是部分研究者针对关系数据库模型过于简单,不便表达复杂的嵌套需要以及支持数据类型有限等局限,从数据模型入手而提出的全面基于因特网应用的新型数据库理论。支持重复字段、子字段以及变长字段并实现了对变长数据和重复字段进行处理和数据项的变长存储管理,在处理连续信息(包括全文信息)和非结构信息 (重复数据和变长数据)中有着传统关系型数据库所无法比拟的优势。但研究者认为此种数据库技术并不会完全取代如今流行的关系数据库,而是它们的有益的补充。
数据库技术发展的又一趋势
有学者指出 :数据库与学科技术的结合将会建立一系列新数据库,如分布式数据库、并行数据库、知识库、多媒体数据库等,这将是数据库技术重要的发展方向。其中,许多研究者都对多媒体数据库作为研究的重点,并认为多媒体技术和可视化技术引入多媒体数据库将是未来数据库技术发展的热点和难点。
未来数据库技术及市场发展的两大方向数据仓库电子商务部分学者在对各个数据库厂商的发展方向和应用需求的不断扩展的现状进行分析的基础上,提出数据库技术及市场在向数据仓库和电子商务两个方向不断发展的观点。他们指出 :从上一年开始,许多行业如电信、金融、税务等逐步认识到数据仓库技术对于企业宏观发展所带来的巨大经济效益,纷纷建立起数据仓库系统。在中国提供大型数据仓库解决方案的厂商主要有Oracle、IBM、Sybase、CA及Informix等厂商,已经建设成功并已收回投资的项目主要有招商银行系统和国信证券系统等。当前,国内外学者对数据仓库的研究正在继续深入。与此同时,一些学者将数据库技术及市场发展的视角瞄准电子商务领域,他们认为 :如今的信息系统逐渐要求按照以客户为中心的方式建立应用框架,因此势必要求数据库应用更加广泛地接触客户,而Internet给了我们一个非常便捷的连接途径,通过Internet我们可以实现所谓的One One Marketing和One One business,进而实现E business。因此,电子商务将成为未来数据库技术发展的另一方向。
面向专门应用领域的数据库技术许多研究者从实践的角度对数据库技术进行研究,提出了适合应用领域的数据库技术如工程数据库、统计数据库、科学数据库、空间数据库、地理数据库等。这类数据库在原理上也没有多大的变化,但是它们却与一定的应用相结合,从而加强了系统对有关应用的支撑能力,尤其表如今数据模型、语言、查询方面。部分研究者认为,随着研究工作的继续深和数据库技术在实践工作中的应用,数据库技术将会更多朝着专门应用领域发展。 数据和数据处理
数据(Data)是用于描述现实世界中各种具体事物或抽象概念的,可存储并具有明确意义的符号,包括数字,文字,图形和声音等.数据处理是指对各种形式的数据进行收集,存储,加工和传播的一系列活动的总和.其目的之一是从大量的,原始的数据中抽取,推导出对人们有价值的信息以作为行动和决策的依据;目的之二是为了借助计算机技术科学地保存和管理复杂的,大量的数据,以便人们能够方便而充分地利用这些宝贵的信息资源.
数据库
数据库(DataBase,DB)是存储在计算机辅助存储器中的,有组织的,可共享的相关数据集合.数据库具有如下特性.
⑴数据库是具有逻辑关系和确定意义的数据集合.
⑵数据库是针对明确的应用目标而设计,建立和加载的.每个数据库都具有一组用户,并为这些用户的应用需求服务.
⑶一个数据库反映了客观事物的某些方面,而且需要与客观事物的状态始终保持一致.
数据库管理系统及其基本功能
数据库管理系统(DataBase Management System,DBMS)是对数据库进行管理的系统软件,它的职能是有效地组织和存储数据,获取和管理数据,接受和完成用户提出的各种数据访问请求.能够支持关系型数据模型的数据库管理系统,称为关系型数据库管理系统(Relational DataBase Management System,RDBMS).
RDBMS的基本功能包括以下4个方面:
⑴数据定义功能:RDBMS提供了数据定义语言(Data Definition Language,DDL),利用DDL可以方便地对数据库中的相关内容进行定义.例如,对数据库,表,字段和索引进行定义,创建和修改.
⑵数据操纵功能:RDBMS提供了数据操纵语言(Data Manipulation Language,DML),利用DML可以实如今数据库中插入,修改和删除数据等基本操作.
⑶数据查询功能:RDBMS提供了数据查询语言(Data Query Language,DQL),利用DQL可以实现对数据库的数据查询操作.
⑷数据控制功能:RDBMS提供了数据控制语言(Data Control Language,DCL),利用DCL可以完成数据库运行控制功能,包括并发控制(即处理多个用户同时使用某些数据时可能产生的问题),安全性检查,完整性约束条件的检查和执行,数据库的内部维护(例如索引的自动维护)等.RDBMS的上述许多功能都可以通过结构化查询语言(Structured Query Language,SQL)来实现的,SQL是关系数据库中的一种标准语言,在不同的RDBMS产品中,SQL中的基本语法是相同的.此外,DDL,DML,DQL和DCL也都属于SQL.
⒈3.4数据库应用系统及其组成
数据库应用系统又简称为数据库系统,是指拥有数据库技术支持的计算机系统,它可以实现有组织地,动态地存储大量相关数据,提供数据处理和信息资源共享服务的功能.
各类人员主要参与数据库应用系统的需求分析,设计,开发,使用,管理和维护,他们在数据库应用系统的开发,运行及维护等阶段扮演着不同的角色,并起着不同的作用.各类人员主要包括以下几种.
⑴最终用户.
⑵系统分析员.
⑶应用程序员.
⑷数据库管理员(DataBase Administrator,DBA). 从其应用方式来看,数据库技术主要起着两方面的作用.
⑴信息系统开发作用.利用数据库技术以及互联网技术,并结合具体的编程语言,可以开发一个信息系统,从而解决业务数据的输入和管理问题.在信息系统开发中,主要利用的是RDBMS的基本功能,即数据定义功能,数据操纵功能,数据查询功能以及数据控制功能.
⑵数据分析与展示作用.利用RDBMS的数据查询功能对数据库中的数据进行关联组合或逐级汇总分析,并以表格,图形或报表形式将分析结果进行展示,从而解决业务数据的综合利用问题.

『伍』 3、 新一代数据库技术有哪些特点

三、新一代数据库技术的特点
一方面立足于数据库已有的成果和技术,加以发展进化,有人称之为"进化论"的观点和方法。另一方面的努力是立足于新的应用需求和计算机未来的发展,研究全新的数据库系统,有人称之为"革新论"的观点和方法。

可以说新一代数据库技术的研究,新一代数据库系统的发展呈现了百花齐放的局面。其特点是:

1.面向对象的方法和技术对数据库发展的影响最为深远

八十年代出现的面向对象的方法和技术对计算机各个领域,包括程序设计语言、软件工程、信息系统设计,以及计算机硬件设计等都产生了深远的影响,也给面临新挑战的数据库技术带来了机会和希望。 数据库研究人员借鉴和吸收了面向对象的方法和技术,提出了面向对象数据模型(简称对象模型)。 该模型克服了传统数据模型的局限性,为新一代数据库系统的探索带来了希望,促进了数据库技术在一个新的技术基础上继续发展。

2.数据库技术与多学科技术的有机结合

数据库技术与多学科技术的有机结合是当前数据库技术发展的重要特征。

计算机领域中其它新兴技术的发展对数据库技术产生了重大影响。 传统的数据库技术和其它计算机技术的互相结合,建立和实现了一系列新型数据库系统,如分布式数据库系统、并行数据库系统、演绎数据库系统、知识库系统、多媒体数据库系统等等。它们共同构成了数据库系统大家族。

3. 面向应用领域的数据库技术的研究

『陆』 大数据技术包括哪些

大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。

1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。

2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,

3、基础架构:云存储、分布式文件存储等。

4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。

5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

7、模型预测:预测模型、机器学习、建模仿真。

8、结果呈现:云计算、标签云、关系图等。

『柒』 常用的数据库安全技术有哪些

数据库的安全性是指保护数据库以防止不合法的使用所造成的数据泄露、更改或破坏。
安全性问题不是数据库系统所独有的,所有计算机系统都有这个问题。只是在数据库系统中大量数据集中存放,而且为许多最终用户直接共享,从而使安全性问题更为突出。 系统安全保护措施是否有效是数据库系统的主要指标之一。 数据库的安全性和计算机系统的安全性,包括操作系统、网络系统的安全性是紧密联系、相互支持的。
实现数据库安全性控制的常用方法和技术有:
(1)用户标识和鉴别:该方法由系统提供一定的方式让用户标识自己咱勺名字或身份。每次用户要求进入系统时,由系统进行核对,通过鉴定后才提供系统的使用权。
(2)存取控制:通过用户权限定义和合法权检查确保只有合法权限的用户访问数据库,所有未被授权的人员无法存取数据。例如C2级中的自主存取控制(I)AC),Bl级中的强制存取控制(M.AC)。
(3)视图机制:为不同的用户定义视图,通过视图机制把要保密的数据对无权存取的用户隐藏起来,从而自动地对数据提供一定程度的安全保护。
(4)审计:建立审计日志,把用户对数据库的所有操作自动记录下来放人审计日志中,DBA可以利用审计跟踪的信息,重现导致数据库现有状况的一系列事件,找出非法存取数据的人、时间和内容等。
(5)数据加密:对存储和传输的数据进行加密处理,从而使得不知道解密算法的人无法获知数据的内容。

『捌』 数据库有哪些新技术

SQLServer是大众化的吧
超大型数据库orical用的比较多
小型免费mySQL最多
还有DB2等

新技术接触不多,给你个链接你看下网页链接

『玖』 新一代数据库包括哪些

nosql数据库,如:
Membase
MongoDB
Hypertable
Apache Cassandra

『拾』 大数据技术有哪些

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。

大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿

零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。

必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。

重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。

1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。

主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。

其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。

关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术。

改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术。

改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。

根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。

统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。

神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。

数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

从挖掘任务和挖掘方法的角度,着重突破:

1.可视化分析。

数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。

数据图像化可以让数据自己说话,让用户直观的感受到结果。

2.数据挖掘算法。

图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。

分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。

这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。

3.预测性分析。

预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。

4.语义引擎。

语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。

5.数据质量和数据管理。

数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能、 *** 决策、公共服务。

例如:商业智能技术, *** 决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

阅读全文

与当前数据库新技术有哪些相关的资料

热点内容
java输出到txt换行 浏览:663
excel如何将数据对应图片 浏览:428
几岁当程序员 浏览:570
老版ps安装教程 浏览:515
联想g480无线网络受限 浏览:779
solidworks2016版本 浏览:476
电脑前不显示wifi密码 浏览:956
魔域版本网站 浏览:54
ug二维编程怎么设置深度 浏览:610
如何做一个练习题目的app 浏览:37
怎么编辑只读文件 浏览:271
matlab矩阵决策怎么编程 浏览:367
雅安大数据中心股东多少 浏览:882
电脑编程画笔怎么弄彩色 浏览:39
用eclipse创建文件夹里 浏览:805
手机文件夹翻译 浏览:577
如何设置压缩密码 浏览:683
如何连续播放dat文件夹里的视频 浏览:825
数控编程如何下载软件 浏览:243
在电脑里找文件 浏览:363

友情链接