導航:首頁 > 網路信息 > 卷積神經網路怎麼訓練

卷積神經網路怎麼訓練

發布時間:2025-03-17 15:22:15

『壹』 深度神經網路是如何訓練的

我就以卷積神經網路為例來說吧。卷積神經網路的訓練過程就是對大量帶標簽數據(監督學習)通過反向傳播演算法學習網路結構中的參數。其基本思想是:基於一組設置的初始化模型參數,比如利用高斯分布來隨機初始化網路結構中的參數,輸入數據在卷積神經網路中經過前向傳播會得到一個期望輸出,如果這個期望輸出與數據的實際類別標簽不相同,則將誤差逐層反向傳播至輸入層,每層的神經元會根據該誤差對網路結構中的參數進行更新。對卷積神經網路而言,待學習的參數包括卷積核參數、層間的連接參數以及各層的偏置。訓練好的模型能夠計算新輸入數據對應的類別標簽,從而完成分類或預測任務。

閱讀全文

與卷積神經網路怎麼訓練相關的資料

熱點內容
網路中常用的傳輸介質 瀏覽:518
文件如何使用 瀏覽:322
同步推密碼找回 瀏覽:865
樂高怎麼才能用電腦編程序 瀏覽:65
本機qq文件為什麼找不到 瀏覽:264
安卓qq空間免升級 瀏覽:490
linux如何刪除模塊驅動程序 瀏覽:193
at89c51c程序 瀏覽:329
怎麼創建word大綱文件 瀏覽:622
裊裊朗誦文件生成器 瀏覽:626
1054件文件是多少gb 瀏覽:371
高州禁養區內能養豬多少頭的文件 瀏覽:927
win8ico文件 瀏覽:949
仁和數控怎麼編程 瀏覽:381
項目文件夾圖片 瀏覽:87
怎麼在東芝電視安裝app 瀏覽:954
plc顯示數字怎麼編程 瀏覽:439
如何辨別假網站 瀏覽:711
寬頻用別人的賬號密碼 瀏覽:556
新app如何佔有市場 瀏覽:42

友情鏈接