导航:首页 > 编程大全 > alexnet网络结构详解

alexnet网络结构详解

发布时间:2023-03-23 08:26:27

⑴ (2012, AlexNet) ImageNet Classification with Deep Convolutional Neural Networks

上一篇文章中的LeNet-5是第一个广为人知的经典CNN网络,但那是20年前提出的CNN网络,最成功的案例是解决了手写数字识别的问题,当时被广泛应用于邮局/银行的手写邮编/支票数字自动识别系统。但直到2012年之前,在这14年间,CNN网络在图像识别领域的地位逐渐被其他分类模型如SVM取代。其中主要的原因有(事后诸葛亮......):

经过十几年的发展,以上制约CNN网络发展的主要限制因素一个个被解决,结果在2012年的ImageNet竞赛中,继LeNet-5之后的第二个经典CNN网络—AlexNet横空出世。以超出第二名10%以上的top-5准确率,勇夺ImageNet2012分类比赛的冠军,从此, 深度学习 重新回到人们的视野,并一发不可收拾。

下面从一些直观的数据比较1998年的LeNet-5和2012年的AlexNet的区别:

AlexNet网络结构如下图所示:

论文中由于使用了2块GPU,将网络结构布置成了上下两部分,看着很不方便,上图是在网上找的简易版本

下面总结AlexNet的主要特点:

3.1. 使引入Relu激团宽腔活函数减轻深度网络难以训练的问题

关于CNN网络的激活函数的讨论,SigAI公众号这篇文章总结的挺好:

另外,下面这篇论文对深度网络难以训练的问题进行了分析:

之前的CNN网络,包括前面著名的LeNet-5,都使用tanh/Sigmoid作为激活函数,这类激活函数具有巧槐饱和性,在训练深层网络时会造成梯度消失问题,而AlexNet引入了非饱和的Relu激活函数,有效地缓解了梯度消失问题。

3.2. 解决深度网络的过拟合问题

一方面,近几年来,人们越来越意识到构建庞大的数据集的重要性,于是出现了像ImageNet这样超过1500万张标注图片,2200多种类别的数据集,ILSVRC2012中,AlexNet使用了150万张图片的庞大训练集,使得拥有6000万个参数的AlexNet也没出现严重过拟合问题;

另外,AlexNet在训练时使用了数据增强(data augmentation)策略,相当于进一步扩大了训练数据集;

最后,AlexNet在全连接层部分引入了一个dropout层,同样能有效防止模型出现过拟合。

3.3. 计算能力问题

尽管AlexNet的模型复杂度很大,但其利用了英伟达GPU强大的计算能力,在GPU面前,模型复杂度不是问题。

从模型的设计思路来看,其实AlexNet遵循了LeNet-5的思想,即使用交替的卷积塌衫层和池化层用于提取图像的高级语义特征,同时降低特征尺寸。然后使用全连接层/MLP作为分类层。

但是,在细节部分,ALexNet引入了很多新的元素,用于解决以上提到的CNN网络遇到的诸多问题,使得CNN网络开始重新散发光芒。

⑵ 深度学习之卷积神经网络经典模型

LeNet-5模型 在CNN的应用中,文字识别系统所用的LeNet-5模型是非常经典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一个成功大规模应用在手写数字识别问题的卷积神经网络,在MNIST数据集中的正确率可以高达99.2%。

下面详细介绍一下LeNet-5模型工作的原理。
LeNet-5模型一共有7层,每层包含众多参数,也就是卷积神经网络中的参数。虽然层数只有7层,这在如今庞大的神经网络中可是说是非常少的了,但是包含了卷积层,池化层,全连接层,可谓麻雀虽小五脏俱全了。为了方便,我们把卷积层称为C层,下采样层叫做下采样层。
首先,输入层输入原始图像,原始图像被处理成32×32个像素点的值。然后,后面的隐层计在卷积和子抽样之间交替进行。C1层是卷积层,包含了六个特征图。每个映射也就是28x28个神经元。卷积核可以是5x5的十字形,这28×28个神经元共享卷积核权值参数,通过卷积运算,原始信号特征增强,同时也降低了噪声,当卷积核不同时,提取到图像中的特征不同;C2层是一个池化层,池化层的功能在上文已经介绍过了,它将局部像素值平均化来实现子抽样。
池化层包含了六个特征映射,每个映射的像素值为14x14,这样的池化层非常重要,可以在一定程度上保证网络的特征被提取,同时运算量也大大降低,减少了网络结构过拟合的风险。因为卷积层与池化层是交替出现的,所以隐藏层的第三层又是一个卷积层,第二个卷积层由16个特征映射构成,每个特征映射用于加权和计算的卷积核为10x10的。第四个隐藏层,也就是第二个池化层同样包含16个特征映射,每个特征映射中所用的卷积核是5x5的。第五个隐藏层是用5x5的卷积核进行运算,包含了120个神经元,也是这个网络中卷积运算的最后一层。
之后的第六层便是全连接层,包含了84个特征图。全连接层中对输入进行点积之后加入偏置,然后经过一个激活函数传输给输出层的神经元。最后一层,也就是第七层,为了得到输出向量,设置了十个神经元来进行分类,相当于输出一个包含十个元素的一维数组,向量中的十个元素即0到9。
AlexNet模型
AlexNet简介
2012年Imagenet图像识别大赛中,Alext提出的alexnet网络模型一鸣惊人,引爆了神经网络的应用热潮,并且赢得了2012届图像识别大赛的冠军,这也使得卷积神经网络真正意义上成为图像处理上的核心算法。上文介绍的LeNet-5出现在上个世纪,虽然是经典,但是迫于种种复杂的现实场景限制,只能在一些领域应用。不过,随着SVM等手工设计的特征的飞速发展,LeNet-5并没有形成很大的应用状况。随着ReLU与dropout的提出,以及GPU带来算力突破和互联网时代大数据的爆发,卷积神经网络带来历史的突破,AlexNet的提出让深度学习走上人工智能的最前端。
图像预处理
AlexNet的训练数据采用ImageNet的子集中的ILSVRC2010数据集,包含了1000类,共1.2百万的训练图像,50000张验证集,150000张测试集。在进行网络训练之前我们要对数据集图片进行预处理。首先我们要将不同分辨率的图片全部变成256x256规格的图像,变换方法是将图片的短边缩放到 256像素值,然后截取长边的中间位置的256个像素值,得到256x256大小的图像。除了对图片大小进行预处理,还需要对图片减均值,一般图像均是由RGB三原色构成,均值按RGB三分量分别求得,由此可以更加突出图片的特征,更方便后面的计算。
此外,对了保证训练的效果,我们仍需对训练数据进行更为严苛的处理。在256x256大小的图像中,截取227x227大小的图像,在此之后对图片取镜像,这样就使得原始数据增加了(256-224)x(256-224)x2= 2048倍。最后对RGB空间做PCA,然后对主成分做(0,0.1)的高斯扰动,结果使错误率下降1%。对测试数据而言,抽取以图像4个角落的大小为224224的图像,中心的224224大小的图像以及它们的镜像翻转图像,这样便可以获得10张图像,我们便可以利用softmax进行预测,对所有预测取平均作为最终的分类结果。
ReLU激活函数
之前我们提到常用的非线性的激活函数是sigmoid,它能够把输入的连续实值全部确定在0和1之间。但是这带来一个问题,当一个负数的绝对值很大时,那么输出就是0;如果是绝对值非常大的正数,输出就是1。这就会出现饱和的现象,饱和现象中神经元的梯度会变得特别小,这样必然会使得网络的学习更加困难。此外,sigmoid的output的值并不是0为均值,因为这会导致上一层输出的非0均值信号会直接输入到后一层的神经元上。所以AlexNet模型提出了ReLU函数,公式:f(x)=max(0,x)f(x)=max(0,x)。

用ReLU代替了Sigmoid,发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid快很多,这成了AlexNet模型的优势之一。
Dropout
AlexNet模型提出了一个有效的模型组合方式,相比于单模型,只需要多花费一倍的时间,这种方式就做Dropout。在整个神经网络中,随机选取一半的神经元将它们的输出变成0。这种方式使得网络关闭了部分神经元,减少了过拟合现象。同时训练的迭代次数也得以增加。当时一个GTX580 GPU只有3GB内存,这使得大规模的运算成为不可能。但是,随着硬件水平的发展,当时的GPU已经可以实现并行计算了,并行计算之后两块GPU可以互相通信传输数据,这样的方式充分利用了GPU资源,所以模型设计利用两个GPU并行运算,大大提高了运算效率。
模型分析

AlexNet模型共有8层结构,其中前5层为卷积层,其中前两个卷积层和第五个卷积层有池化层,其他卷积层没有。后面3层为全连接层,神经元约有六十五万个,所需要训练的参数约六千万个。
图片预处理过后,进过第一个卷积层C1之后,原始的图像也就变成了55x55的像素大小,此时一共有96个通道。模型分为上下两块是为了方便GPU运算,48作为通道数目更加适合GPU的并行运算。上图的模型里把48层直接变成了一个面,这使得模型看上去更像一个立方体,大小为55x55x48。在后面的第二个卷积层C2中,卷积核的尺寸为5x5x48,由此再次进行卷积运算。在C1,C2卷积层的卷积运算之后,都会有一个池化层,使得提取特征之后的特征图像素值大大减小,方便了运算,也使得特征更加明显。而第三层的卷积层C3又是更加特殊了。第三层卷积层做了通道的合并,将之前两个通道的数据再次合并起来,这是一种串接操作。第三层后,由于串接,通道数变成256。全卷积的卷积核尺寸也就变成了13×13×25613×13×256。一个有4096个这样尺寸的卷积核分别对输入图像做4096次的全卷积操作,最后的结果就是一个列向量,一共有4096个数。这也就是最后的输出,但是AlexNet最终是要分1000个类,所以通过第八层,也就是全连接的第三层,由此得到1000个类输出。
Alexnet网络中各个层发挥了不同的作用,ReLU,多个CPU是为了提高训练速度,重叠pool池化是为了提高精度,且不容易产生过拟合,局部归一化响应是为了提高精度,而数据增益与dropout是为了减少过拟合。
VGG net
在ILSVRC-2014中,牛津大学的视觉几何组提出的VGGNet模型在定位任务第一名和分类任务第一名[[i]]。如今在计算机视觉领域,卷积神经网络的良好效果深得广大开发者的喜欢,并且上文提到的AlexNet模型拥有更好的效果,所以广大从业者学习者试图将其改进以获得更好地效果。而后来很多人经过验证认为,AlexNet模型中所谓的局部归一化响应浪费了计算资源,但是对性能却没有很大的提升。VGG的实质是AlexNet结构的增强版,它侧重强调卷积神经网络设计中的深度。将卷积层的深度提升到了19层,并且在当年的ImageNet大赛中的定位问题中获得了第一名的好成绩。整个网络向人们证明了我们是可以用很小的卷积核取得很好地效果,前提是我们要把网络的层数加深,这也论证了我们要想提高整个神经网络的模型效果,一个较为有效的方法便是将它的深度加深,虽然计算量会大大提高,但是整个复杂度也上升了,更能解决复杂的问题。虽然VGG网络已经诞生好几年了,但是很多其他网络上效果并不是很好地情况下,VGG有时候还能够发挥它的优势,让人有意想不到的收获。

与AlexNet网络非常类似,VGG共有五个卷积层,并且每个卷积层之后都有一个池化层。当时在ImageNet大赛中,作者分别尝试了六种网络结构。这六种结构大致相同,只是层数不同,少则11层,多达19层。网络结构的输入是大小为224*224的RGB图像,最终将分类结果输出。当然,在输入网络时,图片要进行预处理。
VGG网络相比AlexNet网络,在网络的深度以及宽度上做了一定的拓展,具体的卷积运算还是与AlexNet网络类似。我们主要说明一下VGG网络所做的改进。第一点,由于很多研究者发现归一化层的效果并不是很好,而且占用了大量的计算资源,所以在VGG网络中作者取消了归一化层;第二点,VGG网络用了更小的3x3的卷积核,而两个连续的3x3的卷积核相当于5x5的感受野,由此类推,三个3x3的连续的卷积核也就相当于7x7的感受野。这样的变化使得参数量更小,节省了计算资源,将资源留给后面的更深层次的网络。第三点是VGG网络中的池化层特征池化核改为了2x2,而在AlexNet网络中池化核为3x3。这三点改进无疑是使得整个参数运算量下降,这样我们在有限的计算平台上能够获得更多的资源留给更深层的网络。由于层数较多,卷积核比较小,这样使得整个网络的特征提取效果很好。其实由于VGG的层数较多,所以计算量还是相当大的,卷积层比较多成了它最显著的特点。另外,VGG网络的拓展性能比较突出,结构比较简洁,所以它的迁移性能比较好,迁移到其他数据集的时候泛化性能好。到现在为止,VGG网络还经常被用来提出特征。所以当现在很多较新的模型效果不好时,使用VGG可能会解决这些问题。
GoogleNet
谷歌于2014年Imagenet挑战赛(ILSVRC14)凭借GoogleNet再次斩获第一名。这个通过增加了神经网络的深度和宽度获得了更好地效果,在此过程中保证了计算资源的不变。这个网络论证了加大深度,宽度以及训练数据的增加是现有深度学习获得更好效果的主要方式。但是增加尺寸可能会带来过拟合的问题,因为深度与宽度的加深必然会带来过量的参数。此外,增加网络尺寸也带来了对计算资源侵占过多的缺点。为了保证计算资源充分利用的前提下去提高整个模型的性能,作者使用了Inception模型,这个模型在下图中有展示,可以看出这个有点像金字塔的模型在宽度上使用并联的不同大小的卷积核,增加了卷积核的输出宽度。因为使用了较大尺度的卷积核增加了参数。使用了1*1的卷积核就是为了使得参数的数量最少。

Inception模块
上图表格为网络分析图,第一行为卷积层,输入为224×224×3 ,卷积核为7x7,步长为2,padding为3,输出的维度为112×112×64,这里面的7x7卷积使用了 7×1 然后 1×7 的方式,这样便有(7+7)×64×3=2,688个参数。第二行为池化层,卷积核为3×33×3,滑动步长为2,padding为 1 ,输出维度:56×56×64,计算方式:1/2×(112+2×1?3+1)=56。第三行,第四行与第一行,第二行类似。第 5 行 Inception mole中分为4条支线,输入均为上层产生的 28×28×192 结果:第 1 部分,1×1 卷积层,输出大小为28×28×64;第 2 部分,先1×1卷积层,输出大小为28×28×96,作为输入进行3×3卷积层,输出大小为28×28×128;第 3部分,先1×1卷积层,输出大小为28×28×32,作为输入进行3×3卷积层,输出大小为28×28×32;而第3 部分3×3的池化层,输出大小为输出大小为28×28×32。第5行的Inception mole会对上面是个结果的输出结果并联,由此增加网络宽度。
ResNet
2015年ImageNet大赛中,MSRA何凯明团队的ResialNetworks力压群雄,在ImageNet的诸多领域的比赛中上均获得了第一名的好成绩,而且这篇关于ResNet的论文Deep Resial Learning for Image Recognition也获得了CVPR2016的最佳论文,实至而名归。
上文介绍了的VGG以及GoogleNet都是增加了卷积神经网络的深度来获得更好效果,也让人们明白了网络的深度与广度决定了训练的效果。但是,与此同时,宽度与深度加深的同时,效果实际会慢慢变差。也就是说模型的层次加深,错误率提高了。模型的深度加深,以一定的错误率来换取学习能力的增强。但是深层的神经网络模型牺牲了大量的计算资源,学习能力提高的同时不应当产生比浅层神经网络更高的错误率。这个现象的产生主要是因为随着神经网络的层数增加,梯度消失的现象就越来越明显。所以为了解决这个问题,作者提出了一个深度残差网络的结构Resial:

上图就是残差网络的基本结构,可以看出其实是增加了一个恒等映射,将原本的变换函数H(x)转换成了F(x)+x。示意图中可以很明显看出来整个网络的变化,这样网络不再是简单的堆叠结构,这样的话便很好地解决了由于网络层数增加而带来的梯度原来越不明显的问题。所以这时候网络可以做得很深,到目前为止,网络的层数都可以上千层,而能够保证很好地效果。并且,这样的简单叠加并没有给网络增加额外的参数跟计算量,同时也提高了网络训练的效果与效率。
在比赛中,为了证明自己观点是正确的,作者控制变量地设计几个实验。首先作者构建了两个plain网络,这两个网络分别为18层跟34层,随后作者又设计了两个残差网络,层数也是分别为18层和34层。然后对这四个模型进行控制变量的实验观察数据量的变化。下图便是实验结果。实验中,在plain网络上观测到明显的退化现象。实验结果也表明,在残差网络上,34层的效果明显要好于18层的效果,足以证明残差网络随着层数增加性能也是增加的。不仅如此,残差网络的在更深层的结构上收敛性能也有明显的提升,整个实验大为成功。

除此之外,作者还做了关于shortcut方式的实验,如果残差网络模块的输入输出维度不一致,我们如果要使维度统一,必须要对维数较少的进行増维。而增维的最好效果是用0来填充。不过实验数据显示三者差距很小,所以线性投影并不是特别需要。使用0来填充维度同时也保证了模型的复杂度控制在比较低的情况下。
随着实验的深入,作者又提出了更深的残差模块。这种模型减少了各个层的参数量,将资源留给更深层数的模型,在保证复杂度很低的情况下,模型也没有出现梯度消失很明显的情况,因此目前模型最高可达1202层,错误率仍然控制得很低。但是层数如此之多也带来了过拟合的现象,不过诸多研究者仍在改进之中,毕竟此时的ResNet已经相对于其他模型在性能上遥遥领先了。
残差网络的精髓便是shortcut。从一个角度来看,也可以解读为多种路径组合的一个网络。如下图:

ResNet可以做到很深,但是从上图中可以体会到,当网络很深,也就是层数很多时,数据传输的路径其实相对比较固定。我们似乎也可以将其理解为一个多人投票系统,大多数梯度都分布在论文中所谓的effective path上。
DenseNet
在Resnet模型之后,有人试图对ResNet模型进行改进,由此便诞生了ResNeXt模型。

这是对上面介绍的ResNet模型结合了GoogleNet中的inception模块思想,相比于Resnet来说更加有效。随后,诞生了DenseNet模型,它直接将所有的模块连接起来,整个模型更加简单粗暴。稠密相连成了它的主要特点。

我们将DenseNet与ResNet相比较:

从上图中可以看出,相比于ResNet,DenseNet参数量明显减少很多,效果也更加优越,只是DenseNet需要消耗更多的内存。
总结
上面介绍了卷积神经网络发展史上比较著名的一些模型,这些模型非常经典,也各有优势。在算力不断增强的现在,各种新的网络训练的效率以及效果也在逐渐提高。从收敛速度上看,VGG>Inception>DenseNet>ResNet,从泛化能力来看,Inception>DenseNet=ResNet>VGG,从运算量看来,Inception<DenseNet< ResNet<VGG,从内存开销来看,Inception<ResNet< DenseNet<VGG。在本次研究中,我们对各个模型均进行了分析,但从效果来看,ResNet效果是最好的,优于Inception,优于VGG,所以我们第四章实验中主要采用谷歌的Inception模型,也就是GoogleNet。

⑶ 经典卷积神经网络简介之【AlexNet】

论文中转 : ImageNet Classification with Deep Convolutional Neural Networks

自Le Net-5在1998年提出以后,时隔14年,AlexNet横空问世,在2012年ImageNet竞赛中以冠军的成绩笑傲群雄,也就是从那时起,更多更优秀的网络被相继提出。论文第一作者是来自多伦多大学的Alex Krizhevsky,因此网络称为Alex Net。

在论文中,作者训练了一个大而深(相比于之前)的卷积网络用于ImageNet比赛,将120万高分辨图像分为1000个类别。在测试集上,分别达到了37.5%的top-1错误率和17.0%的top-5错误率,超越了先前最好的网络。网络共有600万参数,65万个神经元,5个卷积层加3个全连接层,输出为1000类别。为了防止过拟合,作者采用了数据扩充和dropout正则法,实验结果表明此方法非常有效;为了加快训练速度,作者采用了两块并行的GPU同时对特征图进行运算。

由于采用了双GPU模式,所以结构图呈现的是上图的样子,下面引用一张博客作者 chenyuping666 文章的图片,可以详细的了解网络内部结构与实现细节。

从上图可以看到,输入为227×227×3的图像

在conv1中 ,卷积核大小为11×11,步长为4,通道数为96(每台GPU运算48个,下同),经过激活函数Relu激活后,采用最大池化(size=3×3,stride=2),标准化,输出为27×27×96。

在conv2中 ,卷积核大小为5×5,步长为1,通道数256,先对输入特征图扩展像素为31×31(pad=2),然后卷积,激活,池化(size=3×3,stride=2),标准化,输出特征图为13×13×256。

在conv3,conv4中 ,卷积核大小都为3×3,步长为1,pad=1,通道数为384,经过激活后输出特征图为13×13×384。

在conv5中 ,卷积核大小都为3×3,步长为1,通道数为256,经过激活,池化后输出特征图为6×6×256。

在fcn6,fcn7中 ,共有4096个神经元,采用了dropout技术防止过拟合。

在fcn8 ,也就是最后一层,采用softmax输出1000个类别。

相比于之前的网络,AlexNet为何能取得比较好的结果呢,从作者的论文中可以发现以下几点:

3.1 非线性激活函数Relu
在之前一般使用tanh(x)或sigmoid作为激活函数,但这些饱和的线性函数在梯度的计算上非常缓慢,并且容易产生梯度消失问题。Relu的出现使这些问题得到了有效的解决。在基于cifar-10数据集的标准四层网络测试中,采用tanh和Relu作为激活函数使error rate达到0.25所用的时间,Relu比tanh快大约6倍。

3.2 多个GPU
作者认为计算资源的大小限制了网络的大小,要想训练大的网络结构,必须拥有足够的计算资源。120万的数据集太大以至于单个GPU不足以匹配,因此作者将网络的计算任务分配到两个GPU上执行。目前GPU特别适合做并行化,因为一个GPU可以直接从另一个GPU读和写内容,而不需要经过主机内存。

3.3 局部响应归一化(LRN)
作者在文章中提出了Local Response Normalization的方法,分别将top-1和top-5错误率降低了1.4%和1.2%。作者在文中提到,如果训练样本产生一个正输入到Relu,网络只会在那个特定神经元上学习,但是引入局部响应正则化后,提高了网络的泛化能力。这种响应归一化会产生一种由某一神经元所激发的横向抑制,为由使用不同卷积核计算的神经元输出之中的“big activities”创造竞争。

3.4 重叠池化
一般的池化操作因为没有重叠,所以pool_size 和 stride是相等的。例如6×6的图像在size=2×2的池化后,输出为3×3,但是本文使用的size<stride,即取步长为1,输出为4×4大小的图像。这一方案分别使top-1和top-5错误率降低了0.4%和0.3%。

⑷ 深度卷积网络

LeNet网络的结构如下图所示,可以看出,LeNet网络并没有使用padding,每进行一次卷积,图像的高度和宽度都会缩小,而通道数会一直增加。在全连接层中有400个节点,每个极点都有120个神经元,有时还会从这400个节点抽取一部分节点构建一个全连接层,即有两个全连接层。在该网络中,最后一步就是利用84个特征得到最后的输出,该网络刚开始使用的是 sigmoid 函数 tanh 函数,而现在常常倾向于使用 softmax 函数。需要注意的是,LeNet-5网络进行图像分类时,输入的图像是单通道的灰度图像。

AlexNet是以论文第一作者的名字命名的,该网络的结构,如下图所示,该网络的输出层使用了 softmax 函数。AlexNet网络比LeNet网络规模更大,大约有6000万个参数,用于训练图像和数据集时,能够处理非常相似的基本构造模块,这些模块中包含着大量的隐藏单元,并且与LeNet网络不同的是,该网络使用了ReLu的激活函数。

VGG-16网络没有太多渗衡携的超参数,这是一种专注于构建卷积层的简单网络。如下图所示,该网络首先利用64个过滤器进行了两次卷积,接着在池化层将输入图像压缩,接着又是128个过滤器进行两次卷积,接着载池化。继续用256个过滤器进行3次卷积,再池化,接着再利用512个过滤器卷积3次,再池化,将稍后得到的特征图进行全连接操作,再进 softmax 激活。

由于存在梯度消失和梯度爆炸的原因,深层次的神经网络是很难训练的,如果采用一种跳跃连接的方式,即从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。这种利用跳跃连接构建的深度神经网络ResNets,深度能够超过100层

一个简单的两层神经网络示例,如下图所示:

常规的输出和输出之间的关系可以用如下的公式表示:

如上公式所述,这是一条神经网络的主路径。如果将 的输入直接到深层的激活函数之前,此时,神经网络有了一条副路径,其对应输出将有公式(5)变成如下所示的公式(6)

此时的输入除了原先的输入 外,多了一个 项,即由于 产生了一个残差块。

构建一个ResNet网络就是将很多这样的残差块丛伏堆积在一起,形成一个深度神经网络,如下所示:

使用传统的标准优化算法训练一个网络,随着网络深度的增加,训练误差会先减小再增加,随着网络层数的增加,优化算法会越难以训练,训练误差也会越来越多。但是,使用ResNet网络,能够有效地避免这种情况。

如上所述,加入残差网络之后,其输出计算公式如公式(6)所示,展开这个公式,则有:

如果使用L2正则化或者权重衰减,则会压缩权重参数 的值,如果参数 和参数 等于0,其输出将由公式(7)变成 ,假定使用ReLU激活函数,则有:

由于残差网络存在的这种跳跃连接,很容易得出以上等式,这意味着,即使给神经网络增加两层,但是其效率并不逊色与更简单的神经网络。并且由于存在以上恒等式,使得网络学习隐藏层的单元的信息更加容易。而普通网络,随着网络层数的增加,学习参数会变得很困难。

此外,关于残差网络,如公式(6)所示,假设 与 具有相同的维度,拦猛由于ResNets使用了许多same卷积, 的维度等于输出层的维度。如果输入和输出具有不同的维度,可以再增加一个矩阵 ,使得 和 具有相同的维度。而 的维度可以通过0值填充调节。

在卷积网络的架构设计中,一种有趣的想法是会使用到1×1的过滤矩阵,实际上,对于单通道的图像而言,1×1的过滤矩阵,意义不大,但是,对于多通道的图像而言,1×1的过滤矩阵能够有效减少图像卷积之后的通道数量。

根据卷积和池化的基本知识,随着神经网络层数的增加,图像的通道数量会逐渐增加,采用1×1的过滤矩阵卷积之后,可以有效减少图像的通道数量,一个简单的示例,如下所示:

假设有一个6×6×32的图片,使用1×1×32的过滤矩阵进行卷积运算,整个运算过程将会遍历36个单元格,并计算过滤矩阵所覆盖区域的元素积之和,将其应用到ReLu非线性函数,会得到一个输出值。此计算过程中,可能会用到多个1×1×32的过滤器,那么,通过以上计算会得到一个 6×6×过滤器数量 的矩阵。

构建卷积神经网络时,有时会很难决定过滤器的大小,而Inception网络的引入,却能很好的解决这个问题。

Inception网络的作用就是代替人工确定选择卷积层的过滤器类型。如下图所示,对于一个多通道图像,可以使用不同的过滤矩阵或者池化层,得到不同的输出,将这些输出堆积起来。

有了如上图所示的Inception块,最终输出为32+32+64+128=256,而Inception模块的输入为28×28×192,其整个计算成本,以5×5的过滤矩阵为例,其乘法的计算次数为:28×28×32×5×5×192,整个计算次数超过了1.2亿次。而如果使用如下所示的优化计算方法,则可以有效减少计算量。

如果利用1×1的过滤器,将输入矩阵的通道减少至16,则可以有效减少计算量,如下所示:

如上图所示的价格中,整个网络的运算次数为:28×28×192×16+28×28×32×5×5×16=1240万,整个计算成本降低至原来的十分之一。而,通过1×1×192过滤器卷积得到的这个网络层被称之为瓶颈层。

如上,所示,可以给每一个非1×1的卷积层之前,加入一个1×1的瓶颈层,就可以构建一个基本的inception模块了,如下图所示:

而一个inception网络就是多个Inception模块连接起来,如下图所示:

事实上,以上网络中,还存在一些分支,如编号1所示,这些分支就是全连接层,而全连接层之后就是一个softmax层用于预测。又如分支2所示,包含一些隐藏层(编号3),通过全连接层和softmax进行预测。这些分支结构能够确保,即使是隐藏层和中间层也参与了特征计算,并且也能够预测图片的分类。这种做法能够有效避免网络过拟合。

对于计算机视觉领域而言,神经网络的训练可能需要大量的数据,但是当数据量有限时,可以通过数据增强来实现数据量的扩充,以提高系统的鲁棒性,具体的数据增强方法如下所示:

除了以上三种数据增强的方法外,更多的数据增强方法和实现可以参考 图像数据增强

数据增强可以利用计算机多线程实现,一个线程用来实现加载数据,实现数据增强,其他线程可以训练这些数据以加快整体的运算速度。

⑸ 深度学习架构包括

深度学习架构包括如下:


1、AlexNet

AlexNet是首个深度架构,它由深度学习先驱GeoffreyHinton及其同僚共同引入。AlexNet是一个简单却功能强大的网络架构,为深度学习的开创性研究铺平了道路。分解后的AlexNet像是一个简单的架构,卷积层和池化层层叠加,最上层是全连接层。

GAN是神经网络架构中完全不同的类别。GAN中,一种神经网络用于生成全新的、训练集中未曾有过的图像,但却足够真实。

⑹ LeNet5、AlexNet、VGG-16、GoogLeNet、ResNet50原理及其结构

论文地址: Gradient-based learning applied to document recognition

论文地址: ImageNet Classification with Deep Convolutional Neural Networks

  AlexNet由5个卷积层和3个全连接层组成(不包含池化层)。是2012年ImageNet ILSVRC的冠军。在原始的论文中,因为使用了凳缓2个GPU进行了计算,所以将整个网络分成了上下两部分,在下文结构的解释中,我们就不单独分开了,就直接合起来进行描述。如果想看分两组讨论的,有一个另外的参考博客: 神经网络之AlexNet

AlexNet 引入了激活函数relu,除了最后一层是softmax以外,其他的激活函数都是relu。引入的局部响应归一化在后续的研究中证明并无太大的作用,一般都是用的BN,所以这里不详细研究这个了。

论文地址: Very Deep Convolutional Networks for Large-Scale Image Recognition

  VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小派茄卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG中,使用了3个3x3卷积核来代替5x5卷积核,使用了2个3x3卷积核来代替11*11卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络
的效果。
  其中16表示由13个卷积层和3个全连接层组成。

  结构图1说明了其中卷积层枣羡模的参数,结构图2说明了每一层的输出层的参数,图三说明了具体的参数过程。

写的太累了,不想写了,有时间再吧后面的两个模型搞详细点。

⑺ 如何用深度学习实现卫星图像分割与识别

深度学习在物体识别中最重要的进展体现在ImageNetILSVRC3挑战中的图像分类任务。传统计算机视觉方法在此测试集上最低的错误率是26.172%。2012年,欣顿的研究小组利用卷积网络把错误率降到了15.315%。此网络结构被称为AlexNet,与传统的卷积网络相比,它有三点与众不同之处:首先,AlexNet采用了dropout的训练策略,在训练过程中将输入层和中间层的一些神经元随机置零。这模拟了噪音对输入数据的各种干扰使一些神经元对一些视觉模式产生漏检的情况。Dropout使训练过程收敛得更慢,但得到的网络模型更加鲁棒。其次,AlexNet采用整流线型单元作为非线性的激发函数。这不仅大大降低了计算的复杂度,而且使神经元的输出具有稀疏的特征,对各种干扰更加鲁棒。第三,AlexNet通过对训练样本镜像映射和加入随机平移扰动,产生了的训练样本,减少了过拟合。在ImageNetILSVRC2013比赛中,排名前20的小组使用的都是深度学习技术。获胜者是纽约大学罗伯·费格斯(RobFergus)的研究小组,所采用的深度模型是卷积网络,并对网络结构作了进一步优化,错误率为11.197%,其模型称作Clarif。在ILSVRC2014比赛中,获胜者GooLeNet[18]将错误率降到了6.656%。GooLeNet突出的特点是大大增加了卷积网络的深度,超过了20层,这在此之前是不可想象的。很深的网络结构给预测误差的反向传播带了困难,这是因为预测误差是从最顶层传到底层的,传到底层的误差很小,难以驱动底层参数的更新。GooLeNet采取的策略是将监督信号直接加到多个中间层,这意味着中间层和底层的特征表示也要能够对训练数据进行准确分类。如何有效地训练很深的网络模型仍是未来研究的一个重要课题。虽然深度学习在ImageNet上取得了巨大成功,但是很多应用的训练集是较小的,在这种情况下,如何应用深度学习呢?有三种方法可供参考:(1)可以将ImageNet上训练得到的模型作为起点,利用目标训练集和反向传播对其进行继续训练,将模型适应到特定的应用[10]。此时ImageNet起到预训练的作用。(2)如果目标训练集不够大,可以将底层的网络参数固定,沿用ImageNet上的训练集结果,只对上层进行更新。这是因为底层的网络参数是最难更新的,而从ImageNet学习得到的底层滤波器往往描述了各种不同的局部边缘和纹理信息,而这些滤波器对一般的图像有较好的普适性。(3)直接采用ImageNet上训练得到的模型,把最高的隐含层的输出作为特征表达,代替常用的手工设计的特征。

⑻ 经典CNN网络结构-AlexNet、VGG、GoogleNet、ResNet)

AlexNet之所以能够成功,跟这个模型设计的特点有关,主要有:
使用了非线性激活函数:ReLU
防止过拟合的方法:Dropout,数据扩充(Data augmentation)
其他:多GPU实现,LRN归一化层的使用

GoogLeNet(从Inception v1到v4的演进)

2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。

VGG 继承了 LeNet 以及 AlexNet 的一些框架结构,而 GoogLeNet 则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比 AlexNet VGG 小很多。

GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择;从模型结果来看,GoogLeNet的性能却更加优越。

解决深度网络(过拟合, 参数过多, 梯度弥散)这些问题的方法当然就是在增加网络深度和宽度的同时减少参数,为了减少参数,自然就想到将全连接变成稀疏连接。但是在实现上,全连接变成稀疏连接后实际计算量并不会有质的提升,因为大部分硬件是针对密集矩阵计算优化的,稀疏矩阵虽然数据量少,但是计算所消耗的时间却很难减少。那么,有没有一种方法既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能。大量的文献表明可以将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能, 如人类的大脑是可以看做是神经元的重复堆积,因此,GoogLeNet团队提出了Inception网络结构,就是构造一种“基础神经元”结构,来搭建一个稀疏性、高计算性能的网络结构。

原始输入图像为224x224x3,且都进行了零均值化的预处理操作(图像每个像素减去均值)。
输入为224x224的RGB图像,‘#3x3 rece’和‘#5x5 rece’表示3x3和5x5卷积之前1x1的卷积核的个数。
之所以卷积核大小采用1、3和5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼接在一起了。

阅读全文

与alexnet网络结构详解相关的资料

热点内容
华硕p7h55mplus升级 浏览:240
servlet调用jsp 浏览:481
文件的命名原则有哪些 浏览:352
苹果的文件管理是哪个 浏览:387
智能黑板如何给pdf文件做批注 浏览:788
哈弗智联app如何绑定二手车 浏览:728
cad文件不多可是异常增大 浏览:872
苹果手机怎样将音频文件导入剪映 浏览:432
2016秋季飞歌导航升级 浏览:151
电脑字符串怎么编程 浏览:381
暴风不能在线观看视频文件 浏览:267
三国卡可以升级吗 浏览:939
如何筛选出相同数据 浏览:311
vbox文件找不到 浏览:49
linux互传文件夹 浏览:796
touch1mini灯光控台怎么编程序 浏览:395
ug编程和精雕编程哪个好用 浏览:126
抖音转转app广告哪里接 浏览:820
sublime左侧文件夹 浏览:309
java重复提交 浏览:219

友情链接