1. BP神经网络
神经网络能很好地解决不同的机器学习问题。神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。
上图显示了人工神经网络是一个分层模型,逻辑上可以分为三层:
输入层 :输入层接收特征向量 x
输出层 :输出层产出最终的预测 h
隐含层 :隐含层介于输入层与输出层之间,之所以称之为隐含层,是因为当中产生的值并不像输入层使用的样本矩阵 X或者输出层用到的标签矩阵 y 那样直接可见。
下面引入一些标记法来帮助描述模型:
!$ a^{(j)}_{i} $ 代表第j层的第i个激活单元。 !$ heta^{(j)} $ 代表从第 j 层映射到第 j+1 层时的权重的矩阵,例如 !$ heta^{(1)} $ 代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j+1层的激活单元数量为行数,以第 j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 !$ heta^{(1)} $ 的尺寸为 3*4。
对于上图所示的模型,激活单元和输出分别表达为:
!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $
!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $
!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $
!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $
下面用向量化的方法以上面的神经网络为例,试着计算第二层的值:
对于多类分类问题来说:
我们可将神经网络的分类定义为两种情况:二类分类和多类分类。
二类分类: !$ S_{L} = 0,y = 0,y = 1$
多类分类: !$ S_{L} = k, y_{i} = 1表示分到第i类;(k>2)$
在神经网络中,我们可以有很多输出变量,我们的 !$h_{ heta}{(x)} $ 是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$
我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同结果,然后在利用循环在K个预测中选择可能性最高的一个,将其与y中的实际数据进行比较。
正则化的那一项只是排除了每一层 !$ heta_0$ 后,每一层的 矩阵的和。最里层的循环j循环所有的行(由 +1 层的激活单元数决定),循环i则循环所有的列,由该层( !$ s_l$ 层)的激活单元数所决定。即: !$h_{ heta}{(x)}$ 与真实值之间的距离为每个样本-每个类输出的加和,对参数进行 regularization 的 bias 项处理所有参数的平方和。
由于神经网络允许多个隐含层,即各层的神经元都会产出预测,因此,就不能直接利用传统回归问题的梯度下降法来最小化 !$J( heta)$ ,而需要逐层考虑预测误差,并且逐层优化。为此,在多层神经网络中,使用反向传播算法(Backpropagation Algorithm)来优化预测,首先定义各层的预测误差为向量 !$ δ^{(l)} $
训练过程:
当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解。
为了避免这样的问题,我们采取一种叫做梯度的数值检验( Numerical Gradient Checking )方法。这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的。
对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度。即对于某个特定的 ,我们计算出在 !$ heta - epsilon$ 处和 !$ heta + epsilon$ 的代价值(是一个非常小的值,通常选取 0.001),然后求两个代价的平均,用以估计在 !$ heta$ 处的代价值。
当 !$ heta$ 是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对一个参数的改变进行检验,下面是一个只针对 !$ heta_1$ 进行检验的示例:
如果上式成立,则证明网络中BP算法有效,此时关闭梯度校验算法(因为梯度的近似计算效率很慢),继续网络的训练过程。
2. bp神经网络
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。
虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。
首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。
最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。
3. BP神经网络的原理的BP什么意思
Back Propagation
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向版传播和误差的反向传播两个权过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层(隐含层)可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
神经网络很多种,BP神经网络最常用。
4. BP神经网络(误差反传网络)
虽然每个人工神经元很简单,但是只要把多个人工
神经元按一定方式连接起来就构成了一个能处理复杂信息的神经网络。采用BP算法的多层前馈网络是目前应用最广泛的神经网络,称之为BP神经网络。它的最大功能就是能映射复杂的非线性函数关系。
对于已知的模型空间和数据空间,我们知道某个模型和他对应的数据,但是无法写出它们之间的函数关系式,但是如果有大量的一一对应的模型和数据样本集合,利用BP神经网络可以模拟(映射)它们之间的函数关系。
一个三层BP网络如图8.11所示,分为输入层、隐层、输出层。它是最常用的BP网络。理论分析证明三层网络已经能够表达任意复杂的连续函数关系了。只有在映射不连续函数时(如锯齿波)才需要两个隐层[8]。
图8.11中,X=(x1,…,xi,…,xn)T为输入向量,如加入x0=-1,可以为隐层神经元引入阀值;隐层输出向量为:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以为输出层神经元引入阀值;输出层输出向量为:O=(o1,…,oi,…,ol)T;输入层到隐层之间的权值矩阵用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隐层第j个神经元的权值向量;隐层到输出层之间的权值矩阵用W表示,W=(W1,…,Wk,…,Wl)T,
其中列向量Wk表示输出层第k个神经元的权值向量。
图8.11 三层BP网络[8]
BP算法的基本思想是:预先给定一一对应的输入输出样本集。学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经过各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播。将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有神经元,获得各层的误差信号,用它们可以对各层的神经元的权值进行调整(关于如何修改权值参见韩立群著作[8]),循环不断地利用输入输出样本集进行权值调整,以使所有输入样本的输出误差都减小到满意的精度。这个过程就称为网络的学习训练过程。当网络训练完毕后,它相当于映射(表达)了输入输出样本之间的函数关系。
在地球物理勘探中,正演过程可以表示为如下函数:
d=f(m) (8.31)
它的反函数为
m=f-1(d) (8.32)
如果能够获得这个反函数,那么就解决了反演问题。一般来说,难以写出这个反函数,但是我们可以用BP神经网络来映射这个反函数m=f-1(d)。对于地球物理反问题,如果把观测数据当作输入数据,模型参数当作输出数据,事先在模型空间随机产生大量样本进行正演计算,获得对应的观测数据样本,利用它们对BP网络进行训练,则训练好的网络就相当于是地球物理数据方程的反函数。可以用它进行反演,输入观测数据,网络就会输出它所对应的模型。
BP神经网络在能够进行反演之前需要进行学习训练。训练需要大量的样本,产生这些样本需要大量的正演计算,此外在学习训练过程也需要大量的时间。但是BP神经网络一旦训练完毕,在反演中的计算时间可以忽略。
要想使BP神经网络比较好地映射函数关系,需要有全面代表性的样本,但是由于模型空间的无限性,难以获得全面代表性的样本集合。用这样的样本训练出来的BP网络,只能反映样本所在的较小范围数据空间和较小范围模型空间的函数关系。对于超出它们的观测数据就无法正确反演。目前BP神经网络在一维反演有较多应用,在二维、三维反演应用较少,原因就是难以产生全面代表性的样本空间。
5. 如何通过人工神经网络实现图像识别
人工神经网络( Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。
目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。
一、BP 神经网络
BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。
六、总结
从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。
6. BP神经网络方法
人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经渗透到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃的方法之一。
BP网络是多层前向网络的权值学习采用误差逆传播学习的一种算法(Error Back Propagation,简称BP)。在具体应用该网络时分为网络训练及网络工作两个阶段。在网络训练阶段,根据给定的训练模式,按照“模式的顺传播”→“误差逆传播”→“记忆训练”→“学习收敛”4个过程进行网络权值的训练。在网络的工作阶段,根据训练好的网络权值及给定的输入向量,按照“模式顺传播”方式求得与输入向量相对应的输出向量的解答(阎平凡,2000)。
BP算法是一种比较成熟的有指导的训练方法,是一个单向传播的多层前馈网络。它包含输入层、隐含层、输出层,如图4-4所示。
图4-4 地下水质量评价的BP神经网络模型
图4-4给出了4层地下水水质评价的BP神经网络模型。同层节点之间不连接。输入信号从输入层节点,依次传过各隐含层节点,然后传到输出层节点,如果在输出层得不到期望输出,则转入反向传播,将误差信号沿原来通路返回,通过学习来修改各层神经元的权值,使误差信号最小。每一层节点的输出只影响下一层节点的输入。每个节点都对应着一个作用函数(f)和阈值(a),BP网络的基本处理单元量为非线性输入-输出的关系,输入层节点阈值为0,且f(x)=x;而隐含层和输出层的作用函数为非线性的Sigmoid型(它是连续可微的)函数,其表达式为
f(x)=1/(1+e-x) (4-55)
设有L个学习样本(Xk,Ok)(k=1,2,…,l),其中Xk为输入,Ok为期望输出,Xk经网络传播后得到的实际输出为Yk,则Yk与要求的期望输出Ok之间的均方误差为
区域地下水功能可持续性评价理论与方法研究
式中:M为输出层单元数;Yk,p为第k样本对第p特性分量的实际输出;Ok,p为第k样本对第p特性分量的期望输出。
样本的总误差为
区域地下水功能可持续性评价理论与方法研究
由梯度下降法修改网络的权值,使得E取得最小值,学习样本对Wij的修正为
区域地下水功能可持续性评价理论与方法研究
式中:η为学习速率,可取0到1间的数值。
所有学习样本对权值Wij的修正为
区域地下水功能可持续性评价理论与方法研究
通常为增加学习过程的稳定性,用下式对Wij再进行修正:
区域地下水功能可持续性评价理论与方法研究
式中:β为充量常量;Wij(t)为BP网络第t次迭代循环训练后的连接权值;Wij(t-1)为BP网络第t-1次迭代循环训练后的连接权值。
在BP网络学习的过程中,先调整输出层与隐含层之间的连接权值,然后调整中间隐含层间的连接权值,最后调整隐含层与输入层之间的连接权值。实现BP网络训练学习程序流程,如图4-5所示(倪深海等,2000)。
图4-5 BP神经网络模型程序框图
若将水质评价中的评价标准作为样本输入,评价级别作为网络输出,BP网络通过不断学习,归纳出评价标准与评价级别间复杂的内在对应关系,即可进行水质综合评价。
BP网络对地下水质量综合评价,其评价方法不需要过多的数理统计知识,也不需要对水质量监测数据进行复杂的预处理,操作简便易行,评价结果切合实际。由于人工神经网络方法具有高度民主的非线性函数映射功能,使得地下水水质评价结果较准确(袁曾任,1999)。
BP网络可以任意逼近任何连续函数,但是它主要存在如下缺点:①从数学上看,它可归结为一非线性的梯度优化问题,因此不可避免地存在局部极小问题;②学习算法的收敛速度慢,通常需要上千次或更多。
神经网络具有学习、联想和容错功能,是地下水水质评价工作方法的改进,如何在现行的神经网络中进一步吸取模糊和灰色理论的某些优点,建立更适合水质评价的神经网络模型,使该模型既具有方法的先进性又具有现实的可行性,将是我们今后研究和探讨的问题。