1. 数据缺失想要补齐有什么方法,用spss的替换缺失值和缺失值分析完全不会用
1、均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。
2、利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2...Xp)为信息完全的变量,Y为存在缺失值的变量。
那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
3、极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。
这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。
4、多重岁御型插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶乎猜斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
(1)spss插补缺失数据值在哪里扩展阅读
缺失值产生的原因很多,装备故障、无法获取信息、与其他字段不一致、历史原因等都可能产生缺失值。一种典型的处理方法是插值,插值之后拆氏的数据可看作服从特定概率分布。另外,也可以删除所有含缺失值的记录,但这个操作也从侧面变动了原始数据的分布特征。
对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。
2. spss方差分析同性检验没有数据怎么办
据码态槐具体如下(仅展示存在缺失值数据列),其中,“……”表示该处数据值存在缺失,从数据表可以看出,缺失值主要出现在“舒张压”和“心率”数据列,共存在7处缺失。
二、在SPSS中的操作步闭拿骤
①依次点击“分析——缺失值分析”
②将变量分别选入“定量变量”和“分类变量”中——勾选“回归”方法。
③点击“回归”选项——勾选“保存完成数据”,并命名新的插补后的数据。
④得到插补后的数据列及具体补充数据。
三、小结
本例以“舒张压”和“心率”为因变量,以“组别”、“性别”、“年龄”、“身高”、“体重”、“收缩压”为自变量,采用回归估计法对存在缺失值的医学数据在SPSS中进行了缺失值的补充步骤展示。回归估计法在进行缺失值填补时较为客观,但可能迟友存在对方差的低估,适用于有适合的“自变量”完整数据存在时
3. SPSS如何处理缺失值
解决方法:重新正确设置来解决此问题。
如下参考:
1.以下表为例,生物成绩中存在缺失值,由于样本量不大,很有可能直接将缺失值去除,这将影响最终的结果。
4. SPSS如何处理缺失值
解决方法:重新正确设置来解决此问题。
如下参考:
1.以下表乱伍为例,生物成绩中存在缺失值,由于样本量不大,很有可能直接将缺失值去除,这将影响最终的结纯虚果。
5. spss分析方法-缺失值分析
spss 分析方法 - 缺失值分析
缺失值可能会导致严重的问题。如果带有缺失值的个案与不带缺失值的个案有着根本的不同,则结果将被误导。此外,缺失的数据还可能降低所计算的统计量的精度,因为计算时的信息比原计划的信息要少。
另一个问题是, 很多统计过程背后的假设都基于完整的个案,而缺失值可能使所需的理论复杂化。
下面我们主要从下面四个方面来解说:
[if !supportLineBreakNewLine]
[endif]
实际应用
理论思想
建立模型
[if !supportLineBreakNewLine]
[endif]
分析结果
[if !supportLineBreakNewLine]
[endif]
一、实际应用
[if !supportLineBreakNewLine]
[endif]
众所周知,在诸如收入、交通事故等问题的研究中,因为被调查者拒绝回答或者由于调查研究中的损耗,会存在一些未回答的问题。
例如在一次人口调查中,15%的人没有回答收入情况,高收入者的回答率比中等收入者要低,或者在严重交通事故报告中,诸如是否使用安全带和酒精浓度等关键问题在很多个案中都没有记录,这些缺失的个案值便是缺失值。缺失值主要表现为以下3种: (1)完全随机缺失(Missing Completely At Random,MCAR),表示缺失和变量的取值无关。 例如,假设在研究年龄和收入的关系,如果缺失的数据和年龄或收入数值无关,则缺失值方式为MCAR。要评估MCAR是否为站得住脚的假设,可以通过比较回答者和未回答者的分布来评估观察数据。也可以使用单变量t-检验或Little's MCAR多变量检验来进行更正规的评估。如果MCAR假设为真,可以使用列表删除(listwise deletion)(完整个案分析),无须担心估计偏差,尽管可能会丧失一些有效性。如果MCAR不成立,列表删除、均值置换等逼近方法就可能不是好的选择。 (2)随机缺失(Missing At Random,MAR) , 缺失分布中调查变量只依赖于数据组中有记录的变量。 继续上面的例子,考虑年龄全部被观察,而收入有时有缺失,如果收入缺失值仅依赖于年龄,缺失值就为MAR。 (3)非随机缺失。 这是研究者最不愿意看到的情形,数据的缺失不仅和其他变量的取值有关,也和自身有关。如果收入缺失值依赖于收入值,则既不是MCAR,也不是MAR。
[if !supportLineBreakNewLine]
[endif]
二、理论思想
SPSS主要对MCAR和MAR两种缺失值情况进行分析。
区别MCAR和MAR的含义在于:由于MCAR实际上很难遇到,应该在进行调查之前就考虑哪些重要变量可能会有非无效的未回答,还要尽量在调查中包括共变量,以便用这些变量来估算缺失值。
[if !supportLineBreakNewLine]
[endif]
针对不同情况的缺失值,SPSS操作给出了以下3种处理方法:
( 1 )删除缺失值, 这种方法适用于缺失值非常少的时候,它不需要专门的步键仔骤,通常在相应的分析对话框的“选项”子对话框中进行设置。
( 2 )替换缺失值 ,利用“转换”菜单中的“替换缺失值”命令将所有的记录看成一个序列,然后采用某种指标对缺失值进雀亮镇行填充。
( 3 )缺失值分析过程 ,缺失值分析过程是SPSS专门针对缺失值分析而提供的模块。
缺失值分析过程有以下3个主要功能: ( 1 )描述缺失值的模式。 通过缺失值分析的诊断报告,用户可以明确地知道缺失值所在位置及其出现的比例是多少,还可以推断缺失值是否为随机缺失等。 ( 2 )利用列表法、成对法、回归法或 EM (期望最大化)法等为含缺失值的数据估算平均值、标准误差、协方差和相关性,成对法还可显示成对完整个案的计数。( 3 )使用回归法或 EM 法用估算值填充(插补)缺失值,以此提高统计结果的可信度。 缺失数据可以是分类数据或定量数据(刻度或连顷粗续),尽管如此,SPSS只能为定量变量估计统计数据并插补缺失数据。对于每个变量,必须将未编码为系统缺失值的缺失值定义为用户缺失值。舍尔判别法利用投影的方法使多维问题简化为一维问题来处理。其通过建立线性判别函数计算出各个观测量在各典型变量维度上的坐标并得出样本距离各个类中心的距离,以此作为分类依据。
[if !supportLineBreakNewLine]
[endif]
[if !supportLineBreakNewLine]
[endif]
三、建立模型
缺失值分析案例:
[if !supportLineBreakNewLine]
[endif]
题目:下表的某些人口统计数据值已被缺失值替换。该假设数据文件涉及某电信公司在减少客户群中的客户流失方面的举措,每个个案对应一个单独的客户,并记录各类人口统计和服务用途信息。下面将结合本数据文件详细说明如何得到数据文件的缺失值,从而认识SPSS的缺失值分析过程。
一、数据输入
二、操作步骤 1、进入SPSS,打开相关数据文件,“分析”|“缺失值分析”命令2、选择“婚姻状况[marital]”“受教育水平[ed]”“退休[retire]”及“性别[gender]”4个变量进入“分类变量”列表框;选择“服务月数[tenure]”“年龄[age]”“在现住址居住年数[address]”“家庭收入(千)[income]”“现职位工作年数[employ]”及“家庭人数[reside]”6个变量进入“定量变量”列表框。
3、在“缺失值分析”对话框中单击“模式”按钮,弹出“缺失值分析:模式”对话框,选中“显示”选项组中的“个案表(按缺失值模式分组)”复选框,从“以下对象的缺失模式”列表框中选中income、ed、retire和gender 4个变量进入“以下对象的附加信息”列表框中。
其他采用默认设置。设置完毕后,单击“继续”按钮,回到“缺失值分析”对话框。
4、单击“描述”按钮,弹出“缺失值分析:描述”对话框。选中“单变量统计”复选框及“指示符变量统计”选项组中的“使用由指示符变量构成的组执行t检验”和“生成分类变量和指示符变量的交叉表”复选框,其他采用默认设置。
5、勾选EM,其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。
[if !supportLineBreakNewLine]
[endif]
四、结果分析
1、单变量统计表下表给出了所有分析变量未缺失数据的频数、平均值和标准差,同时给出了缺失值的个数和百分比以及极值的统计信息。通过这些信息,我们可以初步了解数据的概貌特征,以employ一栏为例,employ变量的有效数据有904个,它们的平均值为11,标准差为10.113,缺失数据有96个,占数据总数的比例为9.6%,有15个极大值。
2、估算表下两个表使用EM法进行缺失值的估算后,总体数据的均值和标准差的变化情况,其中“所有值”为原始数据的统计特征,EM为使用EM法后总体数据的统计特征。
3
、独立方差t检验表独立方差t测试结果,用户可以从中找出影响其他定量变量的变量的缺失值模式, 即通过单个方差 t 统计量结果,检验缺失值是否为完全随机缺失。 可以看出,年龄大的人倾向于不报告收入水平,当收入值缺失时,age的均值是49.73,当收入值完整时,age的均值为40.01。通过income一栏的t统计量可以看出,income的缺失将明显影响其他定量变量,这就说明income的缺失不是完全随机缺失。
4、分类变量和定量变量交叉表以marital为例给出了分类变量与其他定量变量间的交叉表。该表给出了在不同婚姻情况下,各分类变量非缺失的个数和百分比,以及各种缺失值的个数和百分比,图中标识了系统缺失值的取值,以及各变量在不同婚姻情况中的分布情况。
5、表格模式输出结果下表给出了表格模式输出结果(缺失值样式表),它给出了缺失值分布的详细信息,X为使用该模式下缺失的变量。由图可以看出,所有显示的950个个案中,9个变量值都完整的个案数有475个,缺失income值的个案有109个,同时缺失address和income值的个案有16个,其他数据的解释类似。
6、EM估算统计表下面三个表给出了EM算法的相关统计量,包括EM平均值、协方差和相关性。从EM平均值输出结果中可知,age变量的平均值为41.91,从EM协方差输出结果中可知,age和tenture间的协方差值为135.326,从EM相关性输出结果中可知,age与tenture的相关系数为0.496。另外,从三个表格下方的 利特尔的MCAR检验可知,卡方检验的显著性值明显小于0.05,因此,我们拒绝了缺失值为完全随机缺失(MCAR)的假设 ,这也验证了3、独立方差t检验表所得到的结论。
[if !supportLineBreakNewLine]
[endif]
参考案例数据:
[if !supportLineBreakNewLine]
[endif]
[if !supportLists]【1】 [endif]spss统计分析从入门到精通 (第四版) 杨维忠,陈胜可,刘荣 清华大学出版社
(获取更多知识,前往gz号程式解说)
原文来自https://mp.weixin.qq.com/s/CsMIoA_vu8HJoPvW16oNFg
6. SPSS处理问卷出现系统缺失值,怎样处理
缺失值处理简单说就是两种处理,一种是删缺失,一种是填补缺失
在缺失值只占总样本量中败贺很小的比例时,各种处理方式都可以用,区别不大
最简单的,找到那3个缺失的数据,将包含缺失的个案也就是被试都整个删掉不用。
第二种方法是用的人比罩枯较多的,均值填补法,在spss菜单中选择:转换——替换缺失值,将含缺失的变量选入右边分析框中,默认的方法就是均值填补,OK即可
第三种就是比均值填补高明一点的方法,在spss菜单中选择:分析——缺失值分析,将含缺失的变量选入右边分析狂,注意类别变量和定量变量之分在估计方法中,提供了四种方法,前两种是删除法,后两种是填补法,推荐的最优方法是EM,选择EM复选框后,下方的EM按钮由灰变黑,点击该按钮,选择保存完察闷派成数据复选框,然后给新的数据命名,OK之后,spss将生成一个新的数据集,数据集中的数据就是缺失值填补后的
7. 用spss补全数据
这里有缺失值插逗姿补调整的几种方法可以参考。
1、你首先需要定义你数据中的缺失值:
SPSS的窗口有两个视窗,数据视窗和变量视窗,你在变量视窗中,可以看到有missing那一列,你可以将某种取值定义为缺失值。
2、缺失值插补:
Transform->Replacing missing values,目前SPSS16.0有5种缺樱斗失值插补调整脊指磨的方法可以选择。
鉴于你可以利用人口这个辅助变量,可以选择回归的方法。
8. spss16.0缺失值是什么意思
缺失值(Missing data) ,缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类,分组,删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。
相关如下
数据挖掘所面对的数据不是特地为某个挖掘目的收集的,所以可能与分析相关的属性并未收集(或某段时间以后才开始收集),这类属性的缺失不能用缺失值的处理方法进行处理,因为它们未提供任何不完全数据的信息,它和缺失某些属性的值有着本质的区别。
系统缺失值是系统默认的系统值,用"."表示;用户缺失值是用户自己定义的缺失值,通过变量视图去定义即可。
1、你首先需要定义你数中氏尘据中的缺失值:
SPSS的窗口有两个视窗,数据视窗和变量视窗卖禅,你在变量核或视窗中,可以看到有missing那一列,你可以将某种取值定义为缺失值。
2、缺失值插补:
Transform-->Replacing missing values,目前SPSS16.0有5种缺失值插补调整的方法可以选择。
9. spss 怎么设置缺失值
1、我们使用SPSS做数据分析的时候,有时会因为问卷的设置或者数据的保存等原因,造成用于分析的数据部分缺失。我们分析数据前,需要先解含衡培决缺失数据问题,在再做分析。
10. 数据分析中缺失值的处理
数据缺失在许多研究领域都是一个复杂的问题,对数据挖掘来说,缺失值的存在,造成了以下影响:
1.系统丢失了大量的有用信息
2.系统中所表现出的不确定性更加显著,系统中蕴涵的确定性成分更难把握
3.包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出
数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺失值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。
1.列表显示缺失值 mice包 md.pattern( )
2.图形探究缺失值 VIM包
3.用相关性探索缺失值
1.人工填写
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。
2.特殊值填充
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。
3.平均值填充
将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。
4.热卡填充
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。
5.K最近距离邻法
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
6.使用所有可能的值填充
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。
7.组合完整化方法
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。
8.回归
基于完整的数据集,建立回归方程(模型)。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充,当变量不是线性相关或预测变量高度相关时会导致有偏差的估计(SPSS菜单里有这种方法)
9.期望值最大化方法
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。(SPSS菜单里有这种方法)
10.1多重插补原理
多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
10.2多重填补在SPSS中的实现
10.2.1缺失模式分析
分析>多重归因>分析模式
10.2.2缺失值的多重填充
分析>多重归因>归因缺失数据值
10.2.3采用填充后的数据建模
10.3多重填补在R中的实现(基于mice包)
实例:
11.C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。
就几种基于统计的方法而言,删除元组法和平均值填充法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上热卡填充和期望值最大化方法;期望值最大化方法缺少多重填补包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。
补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
直接在包含空值的数据上进行数据挖掘,这类方法包括贝叶斯网络和人工神经网络等。
贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。当在任何一个对象中的缺失值数量很大时,存在指数爆炸的危险。人工神经网络可以有效的对付空值,但人工神经网络在这方面的研究还有待进一步深入展开。人工神经网络方法在数据挖掘应用中的局限性。
多数统计方法都假设输入数据是完整的且不包含缺失值,但现实生活中大多数数据集都包含了缺失值。因此,在进行下一步分析前,你要么删除,要么用合理的数值代理它们,SPSS、R、Python、SAS等统计软件都会提供一些默认的处理缺失值方法,但这些方法可能不是最优的,因此,学习各种各样的方法和他们的分支就显得非常重要。Little和Rubin的《Sstatistical Analysis With Missing Data 》是缺失值领域里经典的读本,值得一看。