Ⅰ 最常用的四种大数据分析方法
本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了五花八门的答案。
其实我想告诉他们的是,数据挖掘分析领域最重要的能力是:能够将数据转化为非专业人士也能够清楚理解的有意义的见解。
使用一些工具来帮助大家更好的理解数据分析在挖掘数据价值方面的重要性,是十分有必要的。其中的一个工具,叫做四维分析法。
简单地来说,分析可被划分为4种关键方法。
下面会详细介绍这四种方法。
1. 描述型分析:发生了什么?
这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。
2. 诊断型分析:为什么会发生?
描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。
良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。
3. 预测型分析:可能发生什么?
预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。
预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。
在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。
4. 指令型分析:需要做什么?
数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。
例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。
结论
最后需要说明,每一种分析方法都对业务分析具有很大的帮助,同时也应用在数据分析的各个方面。
End.
Ⅱ 大数据分析方法与模型有哪些
1、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。
2、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。
3、相关分析数据分析法
相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
4、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
Ⅲ 如何进行大数据分析及处理
聚云化雨的处理方式
聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;
化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;
开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。
Ⅳ 最常用的大数据分析方法有哪些
1、对比分析对比分析法不管是从生活中还是工作中,都会经常用到,对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。
在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。
2、漏斗分析
转化漏斗分析是业务分析的基本模型,最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。
其中,我们往往关注三个要点:
①从开始到结尾,整体的转化效率是多少?
②每一步的转化率是多少?
③哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?
3、用户分析
用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。
可将用户活跃细分为浏览活跃,互动活跃,交易活跃等,通过活跃行为的细分,掌握关键行为指标;通过用户行为事件序列,用户属性进行分群,观察分群用户的访问,浏览,注册,互动,交易等行为,从而真正把握不同用户类型的特点,提供有针对性的产品和服务。
4、指标分析
在实际工作中,这个方法应用的最为广泛,也是在使用其他方法进行分析的同时搭配使用突出问题关键点的方法,指直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等。在选择具体使用哪个基础指标时,需要考虑结果的取向性。
5、埋点分析
只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。
通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。
Ⅳ 大数据 统计分析方法有哪些
您好朋友,上海献峰科技指出:常用数据分析方法有,
聚类分析、内容
2.因子分析、
3.相关分析、
4.对应分析、
5.回归分析、
6.方差分析;
问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、Cronbach’a信度系数分析、结构方程模型分析(structural equations modeling) 。 数据分析常用的图表方法:柏拉图(排列图)、直方图(Histogram)、散点图(scatter diagram)、鱼骨图(Ishikawa)、FMEA、点图、柱状图、雷达图、趋势图。
希 望 采纳不足可追问
Ⅵ 大数据分析方法与数据分析方法有什么区别
其实,没什么区别!数据分析的目的就是为了从大数据中提取、分析出有价值的信息!
只是叫法不同而已!如果是小数据,从一定程度上讲,也不需要什么分析的手段!
Ⅶ 大数据分析方法有哪些
1、因子分析方法
所谓因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奥典型抽因法等等。
2、回归分析方法
回归分析方法就是指研究一个随机变量Y对另一个(X)或一组变量的相依关系的统计分析方法。回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析方法运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
3、相关分析方法
相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系。
4、聚类分析方法
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,不需要事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
5、方差分析方法
方差数据方法就是用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
6、对应分析方法
对应分析是通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
Ⅷ 大数据分析的价值和分析方式
大数据分析的价值和分析方式
对中国大数据市场趋势的调查数据进行解析,以诠释中国大数据市场和技术趋势。同时,会通过在线讲座和中国读者解读中国大数据市场趋势,以及大数据对IT技术、架构、管理以及格局的影响。中桥结合中国大数据市场的调研数据和分析,将分成四个系列对“中国大数据价值和趋势”进行解读。
在前面3个系列里,中桥就大数据分析对未来24个月、企业的大数据分析投入重点以及大数据分析对IT资源的需求进行了分析。在这一系列里,中桥将就大数据的分析方式和技术进行阐述。
大数据分析的业务价值和数据类型
越来越多的企业认识到大数据分析能够带给企业业务的价值。中桥的多选项调查结果显示(图1),企业认为大数据分析能够带来的主要业务价值依次是:提高生产过程的资源利用率,降低生产成本;根据商业分析提高商业智能的准确率,降低传统“凭感觉”做决策的业务风险;动态价格优化利润和增长;获取优质客户。这表明大数据已经对企业的成本、业务决策、利润有着直接的影响。中桥的另外一组调研数据显示,目前越来越多的企业级用户考虑从批量分析(大数据创造价值的第一阶段)向近实时分析(第二阶段)发展,从而提高IT创造价值的能力。同时,数据分析在快速从商业智能向用户智能发展。中国市场正逐步从大数据降低成本向大数据加速业务增长、提高利润以及突破创新发展。
图1. 大数据分析的主要业务价值目前中国用户主要是通过数据分析来提高整个企业的运营效率,降低运营成本。从图2对数据类型的调查结果来看,目前,中国企业的数据分析还是以结构化数据为主,如数据库或事务性数据。此外办公文件、计算机/网络日志文件、文本/信息等也是企业数据增长的主要来源,同时也是能够攫取出价值的数据类型。
图2. 大数据分析数据类型而就导致大数据问题的数据来源调查显示(图3),毫无疑问,数据库首当其冲,是企业大数据的主要来源;而半结构化和非结构化数据如软件和网络日志、感应数据、社群等也已经纳入企业数据分析的主要范畴,这表明企业已经意识到这些数据对于业务的重要性,这也是实现从(大)数据分析第一阶段到大数据分析第二阶段的必要条件。也成为未来24个月用户通过IT创造价值的IT投资重点。
图3. 大数据分析数据来源中国市场大数据分析方法
在了解了企业大数据的来源和种类之后,如何采取有效方式对这些数据进行分析,从而最大程度攫取数据价值,转化为最明智的商业决策以利于企业业务运营,是企业对大数据进行分析的目的所在。从目前中国大数据分析的分析方法来看(图4),有33.8%的企业选择针对具体工作负载来调整通用数据库;22.0%的受访企业选择数据分析云计算服务(如软件即服务和/或基础设施即服务);还有20.7%的企业选择自定义开发的解决方案。仅4.8%的用户使用了并行处理(MPP)分析数据库,3.3%使用了对称处理(SMP)分析数据库。这一结果表明,大多数的中国企业仍处于数据分析的第一阶段。而且,目前中国用户大多采用通用数据库、云计算或自定义开发的解决方案和数据库工具作为大数据分析方法,而没有选择去购买数据分析的软件。
图4. 大数据分析方法MapRece可以让用户把半结构化和非结构化数据整合到数据处理和分析平台,从传统的核心式数据分布演进到集群或网格式数据分布。从图5关于数据处理和分析平台的调查结果来看,常用的分布式计算环境(29.0%)、自定义开发的解决方案(27.7%)、SMP(对称处理)数据库(16.0%)、公有云平台(10.5%)是目前大数据环境下较为普遍采用的数据处理和分析平台,而使用MapRece的企业占比较低(4.8%)。这说明,目前中国企业对MapRece的认同有限,这不仅影响着数据分析三个阶段的演进速度,也制约着数据的采集管理,进一步也影响着大数据分析四个环节的后面几个环节。
图5. 大数据处理和分析平台以上是小编为大家分享的关于大数据分析的价值和分析方式的相关内容,更多信息可以关注环球青藤分享更多干货