Ⅰ 大数据测试工程师需要具备哪些技能
1、测试基本知识
想成为大数据测试工程师之前,有些测试必备的技能,比如软件测试执行提出了我们开展软件测试的执行活动所需要涉及的执行过程以及相关策略;同时了解常用德测试活动中的经验之谈,理论知识的梳理和基本的测试技巧掌握。
2、linux及环境搭建 、Docker容器实现分布式虚拟化技巧
一个成熟的数据从业者应该懂得灵活的运用数据寻找,获取,安装,Debug,分享,团队合作,Linux是知名的开源系统,在这个系统下环境的配置将变得非常容易和透明。Linux操作系统作为常见的底层操作系统,在软件开发、软件测试过程中都会经常接触和使用,很多企业的服务器都是Linux环境的,对于测试人员而言,也都会掌握相应的Linux命令。
3、SQL和数据库相关的技能
数据库是另外一个比较重要的部分,想象一下你不可能一直使用Excel去处理数据,毕竟超过十万行的数据用Excel就比较吃力了。这个时候SQL就是必须要用的,可以说这个是一个核心技能。有的人可能会说SQL非常简单,但是当你实际应用的时候你会发现你在学校学的那些简单Query完全就跟不上需求了。
4、 Python/java语言
先说一下Python, Python是一种万能的语言,适用性非常强,除了数据分析还能够做很多的事情,比如编写程序,网站开发,深度学习等等。如果你决定使用Python,那么你需要了解的点主要是各种包的搜索和调用,函数的编写和嵌套,数据类型的把握(list, tuple, series, dict),条件判断,循环迭代等等。
5、性能测试、框架开发的技能掌握
这个也是成为大数据测试工程师前,你必须要掌握得部分。在了解性能测试各方面的知识和经验的同时,培养自己的独立思考和解决问题的能力,掌握软件性能测试核心技术、工具使用以及项目实战技巧。
Ⅱ 大数据工程师需要掌握哪些技能
大数据技术体来系庞大,包括的知源识较多
1、学习大数据首先要学习Java基础
Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop
2、学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
3、学习大数据需要具备的能力
数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。
Ⅲ 大数据测试需要学什么
首先是基础阶段。这一阶段包括:关系型数据库原理、操作系统原理及应用。在掌握了这些基础知识后,会安排这些基础课程的进阶课程,即:数据结构与算法、MYSQL数据库应用及开发、SHELL脚本编程。在掌握了这些内容之后,大数据基础学习阶段才算是完成了。
接下来是大数据专业学习的第二阶段:大数据理论及核心技术。第二阶段也被分为了基础和进阶两部分,先理解基础知识,再进一步对知识内容做深入的了解和实践。基础部分包括:布式存储技术原理与应用、分布式计算技术、HADOOP集群搭建、运维;进阶内容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源码分析、HIVE、HBASE、Mongodb、HADOOP项目实战。
完成了这部分内容的学习,学员们就已经掌握了大数据专业大部分的知识,并具有了一定的项目经验。但为了学员们在大数据专业有更好的发展,所学知识能更广泛地应用到大数据相关的各个岗位,有个更长远的发展前景。
第三阶段叫做数据分析挖掘及海量数据高级处理技术。基础部分有:PYTHON语言、机器学习算法、FLUME+KAFKA;进阶部分有:机器学习算法库应用、实时分析计算框架、SPARK技术、PYTHON高级语言应用、分布式爬虫与反爬虫技术、实时分析项目实战、机器学习算法项目实战。
Ⅳ 大数据岗位需要掌握哪些技能
大数据所需技能:
1、linux
大数据集群主要建立在linux操作系统上,Linux是一套免费使用和自由传播的回类Unix操作系统。
2、答Hadoop
Hadoop是一个能够对大量数据进行离线分布式处理的软件框架,运算时利用maprece对数据进行处理。
3、HDFS
HDFS是建立在多台节点上的分布式文件系统,用户可以通过hdfs命令来操作分布式文件系统。
4、Hive
Hive是使用sql进行计算的hadoop框架,工作中常用到的部分,也是面试的重点,此部分大家将从方方面面来学习Hive的应用,任何细节都将给大家涉及到。
5、Storm实时数据处理
全面掌握Storm内部机制和原理,通过大量项目实战,拥有完整项目开发思路和架构设计,掌握从数据采集到实时计算到数据存储再到前台展示。
6、spark
大数据开发中最重要的部分,涵盖了Spark生态系统的概述及其编程模型,深入内核的研究,Spark on Yarn,Spark Streaming流式计算原理与实践,Spark SQL,Spark的多语言编程以及SparkR的原理和运行...
Ⅳ 大数据学习一般都学什么
学习大数据首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java
大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下。
有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux
因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop
这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。
其实把Hadoop的这些组件学明白你就能做大数据的处理了,只不过你现在还可能对"大数据"到底有多大还没有个太清楚的概念,听我的别纠结这个。等以后你工作了就会有很多场景遇到几十T/几百T大规模的数据,到时候你就不会觉得数据大真好,越大越有你头疼的。当然别怕处理这么大规模的数据,因为这是你的价值所在,让那些个搞Javaee的php的html5的和DBA的羡慕去吧。记住学到这里可以作为你学大数据的一个节点。
Zookeeper
这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql
我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop
这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive
这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie
既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。
Hbase
这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka
这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了。
因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark
它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
Ⅵ 想学习大数据要掌握哪些知识
学习大数据需要掌握的知识有很多,大数据也是目前非常好的工作岗位,如果你不知道大数据需要学习什么知识,你可以去黑马程序员社区,有学习大数据的学习大纲、视频、工具什么的。
Ⅶ 大数据需要学习哪些内容
大数抄据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
Ⅷ 大数据分析应该掌握哪些基础知识
Java基础语法
· 分支结构if/switch
· 循环结构for/while/do while
· 方法声明和调用
· 方法重载
· 数组的使用
· 命令行参数、可变参数
IDEA
· IDEA常用设置、常用快捷键
· 自定义模板
· 关联Tomcat
· Web项目案例实操
面向对象编程
· 封装、继承、多态、构造器、包
· 异常处理机制
· 抽象类、接口、内部类
· 常有基础API、集合List/Set/Map
· 泛型、线程的创建和启动
· 深入集合源码分析、常见数据结构解析
· 线程的安全、同步和通信、IO流体系
· 反射、类的加载机制、网络编程
Java8/9/10/11新特性
· Lambda表达式、方法引用
· 构造器引用、StreamAPI
· jShell(JShell)命令
· 接口的私有方法、Optional加强
· 局部变量的类型推断
· 更简化的编译运行程序等
MySQL
· DML语言、DDL语言、DCL语言
· 分组查询、Join查询、子查询、Union查询、函数
· 流程控制语句、事务的特点、事务的隔离级别等
JDBC
· 使用JDBC完成数据库增删改查操作
· 批处理的操作
· 数据库连接池的原理及应用
· 常见数据库连接池C3P0、DBCP、Druid等
Maven
· Maven环境搭建
· 本地仓库&中央仓库
· 创建Web工程
· 自动部署
· 持续继承
· 持续部署
Linux
· VI/VIM编辑器
· 系统管理操作&远程登录
· 常用命令
· 软件包管理&企业真题
Shell编程
· 自定义变量与特殊变量
· 运算符
· 条件判断
· 流程控制
· 系统函数&自定义函数
· 常用工具命令
· 面试真题
Hadoop
· Hadoop生态介绍
· Hadoop运行模式
· 源码编译
· HDFS文件系统底层详解
· DN&NN工作机制
· HDFS的API操作
· MapRece框架原理
· 数据压缩
· Yarn工作机制
· MapRece案例详解
· Hadoop参数调优
· HDFS存储多目录
· 多磁盘数据均衡
· LZO压缩
· Hadoop基准测试
Zookeeper
· Zookeeper数据结果
· 内部原理
· 选举机制
· Stat结构体
· 监听器
· 分布式安装部署
· API操作
· 实战案例
· 面试真题
· 启动停止脚本
HA+新特性
· HDFS-HA集群配置
Hive
· Hive架构原理
· 安装部署
· 远程连接
· 常见命令及基本数据类型
· DML数据操作
· 查询语句
· Join&排序
· 分桶&函数
· 压缩&存储
· 企业级调优
· 实战案例
· 面试真题
Flume
· Flume架构
· Agent内部原理
· 事务
· 安装部署
· 实战案例
· 自定义Source
· 自定义Sink
· Ganglia监控
Kafka
· 消息队列
· Kafka架构
· 集群部署
· 命令行操作
· 工作流程分析
· 分区分配策略
· 数据写入流程
· 存储策略
· 高阶API
· 低级API
· 拦截器
· 监控
· 高可靠性存储
· 数据可靠性和持久性保证
· ISR机制
· Kafka压测
· 机器数量计算
· 分区数计算
· 启动停止脚本
DataX
· 安装
· 原理
· 数据一致性
· 空值处理
· LZO压缩处理
Scala
· Scala基础入门
· 函数式编程
· 数据结构
· 面向对象编程
· 模式匹配
· 高阶函数
· 特质
· 注解&类型参数
· 隐式转换
· 高级类型
· 案例实操
Spark Core
· 安装部署
· RDD概述
· 编程模型
· 持久化&检查点机制
· DAG
· 算子详解
· RDD编程进阶
· 累加器&广播变量
Spark SQL
· SparkSQL
· DataFrame
· DataSet
· 自定义UDF&UDAF函数
Spark Streaming
· SparkStreaming
· 背压机制原理
· Receiver和Direct模式原理
· Window原理及案例实操
· 7x24 不间断运行&性能考量
Spark内核&优化
· 内核源码详解
· 优化详解
Hbase
· Hbase原理及架构
· 数据读写流程
· API使用
· 与Hive和Sqoop集成
· 企业级调优
Presto
· Presto的安装部署
· 使用Presto执行数仓项目的即席查询模块
Ranger2.0
· 权限管理工具Ranger的安装和使用
Azkaban3.0
· 任务调度工具Azkaban3.0的安装部署
· 使用Azkaban进行项目任务调度,实现电话邮件报警
Kylin3.0
· Kylin的安装部署
· Kylin核心思想
· 使用Kylin对接数据源构建模型
Atlas2.0
· 元数据管理工具Atlas的安装部署
Zabbix
· 集群监控工具Zabbix的安装部署
DolphinScheler
· 任务调度工具DolphinScheler的安装部署
· 实现数仓项目任务的自动化调度、配置邮件报警
Superset
· 使用SuperSet对数仓项目的计算结果进行可视化展示
Echarts
· 使用Echarts对数仓项目的计算结果进行可视化展示
Redis
· Redis安装部署
· 五大数据类型
· 总体配置
· 持久化
· 事务
· 发布订阅
· 主从复制
Canal
· 使用Canal实时监控MySQL数据变化采集至实时项目
Flink
· 运行时架构
· 数据源Source
· Window API
· Water Mark
· 状态编程
· CEP复杂事件处理
Flink SQL
· Flink SQL和Table API详细解读
Flink 内核
· Flink内核源码讲解
· 经典面试题讲解
Git&GitHub
· 安装配置
· 本地库搭建
· 基本操作
· 工作流
· 集中式
ClickHouse
· ClickHouse的安装部署
· 读写机制
· 数据类型
· 执行引擎
DataV
· 使用DataV对实时项目需求计算结果进行可视化展示
sugar
· 结合Springboot对接网络sugar实现数据可视化大屏展示
Maxwell
· 使用Maxwell实时监控MySQL数据变化采集至实时项目
ElasticSearch
· ElasticSearch索引基本操作、案例实操
Kibana
· 通过Kibana配置可视化分析
Springboot
· 利用Springboot开发可视化接口程序
Ⅸ 大数据分析需掌握哪些方面
1.Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2.Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3.Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4.Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5.Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
关于大数据分析需掌握哪些方面,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。