導航:首頁 > 編程語言 > hadoopjava例子

hadoopjava例子

發布時間:2025-06-10 11:50:32

⑴ 求java自學視頻 從基礎教程到進階實例,萬分感謝啊 。

詳細,包含知識點多的,你可以看看動力節點java基礎視頻大全。裡面有很多深入且精彩回的講解,比如答源碼分析分析講的特別到位,尤其是HashMap的工作原理和源碼分析,真正的把jdk源碼翻了一遍,要是拿著這個去面試絕對是秒殺級神器。

⑵ 如何部署hadoop分布式文件系統

一、實戰環境
系統版本:CentOS 5.8x86_64
JAVA版本:JDK-1.7.0_25
Hadoop版本:hadoop-2.2.0
192.168.149.128namenode (充當namenode、secondary namenode和ResourceManager角色)
192.168.149.129datanode1 (充當datanode、nodemanager角色)
192.168.149.130datanode2 (充當datanode、nodemanager角色)

二、系統准備

1、Hadoop可以從Apache官方網站直接下載最新版本Hadoop2.2。官方目前是提供了linux32位系統可執行文件,所以如果需要在64位系統上部署則需要單獨下載src 源碼自行編譯。(如果是真實線上環境,請下載64位hadoop版本,這樣可以避免很多問題,這里我實驗採用的是32位版本)
1234 Hadoop
Java

2、我們這里採用三台CnetOS伺服器來搭建Hadoop集群,分別的角色如上已經註明。
第一步:我們需要在三台伺服器的/etc/hosts裡面設置對應的主機名如下(真實環境可以使用內網DNS解析)
[root@node1 hadoop]# cat /etc/hosts
# Do not remove the following line, or various programs
# that require network functionality will fail.
127.0.0.1localhost.localdomain localhost
192.168.149.128node1
192.168.149.129node2
192.168.149.130node3

(注* 我們需要在namenode、datanode三台伺服器上都配置hosts解析)
第二步:從namenode上無密碼登陸各台datanode伺服器,需要做如下配置:
在namenode 128上執行ssh-keygen,一路Enter回車即可。
然後把公鑰/root/.ssh/id_rsa.pub拷貝到datanode伺服器即可,拷貝方法如下:
ssh--id -i .ssh/id_rsa.pub [email protected]
ssh--id -i .ssh/id_rsa.pub [email protected]

三、Java安裝配置
tar -xvzf jdk-7u25-linux-x64.tar.gz &&mkdir -p /usr/java/ ; mv /jdk1.7.0_25 /usr/java/ 即可。
安裝完畢並配置java環境變數,在/etc/profile末尾添加如下代碼
export JAVA_HOME=/usr/java/jdk1.7.0_25/
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=$JAVE_HOME/lib/dt.jar:$JAVE_HOME/lib/tools.jar:./

保存退出即可,然後執行source /etc/profile 生效。在命令行執行java -version 如下代表JAVA安裝成功。
[root@node1 ~]# java -version
java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

(注* 我們需要在namenode、datanode三台伺服器上都安裝Java JDK版本)
四、Hadoop版本安裝
官方下載的hadoop2.2.0版本,不用編譯直接解壓安裝就可以使用了,如下:
第一步解壓:
tar -xzvf hadoop-2.2.0.tar.gz &&mv hadoop-2.2.0/data/hadoop/
(注* 先在namenode伺服器上都安裝hadoop版本即可,datanode先不用安裝,待會修改完配置後統一安裝datanode)

第二步配置變數:
在/etc/profile末尾繼續添加如下代碼,並執行source /etc/profile生效。
export HADOOP_HOME=/data/hadoop/
export PATH=$PATH:$HADOOP_HOME/bin/
export JAVA_LIBRARY_PATH=/data/hadoop/lib/native/
(注* 我們需要在namenode、datanode三台伺服器上都配置Hadoop相關變數)

五、配置Hadoop
在namenode上配置,我們需要修改如下幾個地方:
1、修改vi /data/hadoop/etc/hadoop/core-site.xml 內容為如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.149.128:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop-${user.name}</value>
<description>A base forother temporary directories.</description>
</property>
</configuration>

2、修改vi /data/hadoop/etc/hadoop/mapred-site.xml內容為如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>192.168.149.128:9001</value>
</property>
</configuration>

3、修改vi /data/hadoop/etc/hadoop/hdfs-site.xml內容為如下:
<?xml version="1.0"encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" /name>
<value>/data/hadoop/data_name1,/data/hadoop/data_name2</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/data/hadoop/data_1,/data/hadoop/data_2</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>

4、在/data/hadoop/etc/hadoop/hadoop-env.sh文件末尾追加JAV_HOME變數:
echo "export JAVA_HOME=/usr/java/jdk1.7.0_25/">> /data/hadoop/etc/hadoop/hadoop-env.sh

5、修改 vi /data/hadoop/etc/hadoop/masters文件內容為如下:
192.168.149.128

6、修改vi /data/hadoop/etc/hadoop/slaves文件內容為如下:
192.168.149.129
192.168.149.130

如上配置完畢,以上的配置具體含義在這里就不做過多的解釋了,搭建的時候不明白,可以查看一下相關的官方文檔。
如上namenode就基本搭建完畢,接下來我們需要部署datanode,部署datanode相對簡單,執行如下操作即可。
1 fori in`seq 129130` ; doscp -r /data/hadoop/ [email protected].$i:/data/ ; done

自此整個集群基本搭建完畢,接下來就是啟動hadoop集群了。

⑶ 都說大數據難(java hadoop),而且現在大數據開發起步工資很高,我想問一下到底難在什麼地方

大數據,復你要搞清楚大數據的含制義和用處,他不想做網站等等這些其他的開發,這些開發都可以有固定的框架和現成的演算法用,但是大數據不同,大數據就是按照你的需求利用演算法對各種海量數據獲取分析,每個需求的演算法都不一樣,舉幾個例子,用大數據預測天氣肯定要結合氣象知識,結合各種氣象數據設計出一個能相對准確預測的演算法,在比如交通大數據就要根據地點時間車流量,道路吞吐量來預測交通情況從而做好預防工作等等,反正大數據用在不同的地方就得設計不同的演算法

⑷ 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全。
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

⑸ 調查一下:Java一般用在哪些領域

一.大型企業級應用,主要使用JAVA EEE,比如大型企業管理系統,最典型的就是:
1、有關金融行的大型企業,所有的證券公司、銀行,比如建設銀行、工商銀行;
2、有關通信及網路的大型企業:電信、移動、聯通、網通;
3、大型管理系統,如:客戶管理系統、供應鏈等;
二.大型網站,主要使用JAVA EEE,最典型的例子就是電子商務交易平台阿里巴巴以及淘寶;
三.電子政務,主要使用JAVA EEE,相關的政府部門,絕大多數的信息化系統都是由JAVA開發的;
四.游戲,很多手機游戲都是用JAVA開發的。
五.嵌入式設備及消費類電子產品,主要使用 JAVA ME,無線手持設備、醫療設備、通信終端、信息家電(如數字電視、電冰箱、機頂盒)、汽車電子設備等是比較熱門的Java應用領域,這方面的應用例子有中國聯通CDMA 1X網路中基於Java技術的無線數據增值服務
以上是目前來講最為常見的幾個應用領域,供參考

⑹ 如何在hadoop-2.6.0上編譯運行自己編寫的java代碼

在不使用eclipse情況使java程序在hadoop 2.2中運行的完整過程。整個過程中其實分為java程序的編譯,生成jar包,運行測試。
這三個步驟運用的命令都比較簡單,主要的還是如何找到hadoop 2.2提供給java程序用來編譯的jar包。具體可以查看:
HADOOP_HOME/share/hadoop/httpfs/tomcat/webapps/webhdfs/WEB-INF/lib目錄
下面會通過一個在hadoop中創建一個目錄的JAVA例子來進行演示
具體代碼如下:

package com.wan.demo;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

public class HADemo {

public static void main(String[] args) {
// TODO Auto-generated method stub
mkdir(args[0]);
}

public static void mkdir(String dir){
Configuration configuration=new Configuration();
FileSystem fs;
try {
fs = FileSystem.get(configuration);
fs.mkdirs(new Path(dir));
fs.close();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

把HADemo.java文件拷貝到linux環境中
配置HADOOP_HOME/bin到環境中,啟動集群,進入HADemo.java文件目錄中
注:下面的lib目錄裡面的文件由HADOOP_HOME/share/hadoop/httpfs/tomcat/webapps/ webhdfs/WEB-INF/lib目錄中獲取,下面做的目的是為了縮減命令長度
1.編譯java
# mkdir class
#Javac -classpath .:lib/hadoop-common-2.2.0.jar:lib/hadoop-annotations-2.2.0.jar -d class HADemo.java
2.生成jar包
#jar -cvf hademo.jar -C class/ .
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/wan/(in = 0) (out= 0)(stored 0%)
adding: com/wan/demo/(in = 0) (out= 0)(stored 0%)
adding: com/wan/demo/HADemo.class(in = 844) (out= 520)(deflated 38%)
3.測試運行
#hadoop jar hademo.jar com.wan.demo.HADemo /test
檢測:
#hadoop fs -ls /

結束!

閱讀全文

與hadoopjava例子相關的資料

熱點內容
消耗品代碼 瀏覽:834
系統引導文件損壞 瀏覽:716
有什麼招聘網站比較好 瀏覽:705
u盤讀文件和寫文件 瀏覽:336
vsftp文件名前自動加時間 瀏覽:450
編程刀路怎麼導入U盤 瀏覽:597
手機用數據線怎麼連車 瀏覽:412
微信的文件不顯示字 瀏覽:558
考軟考有哪些app 瀏覽:475
微信饞得流口水表情圖 瀏覽:920
火影忍者ol如何升級 瀏覽:437
多尺度網路結構 瀏覽:551
cad另存為的文件類型選什麼 瀏覽:904
蘋果手機里的文件夾怎麼去掉 瀏覽:225
做競標文件多少錢 瀏覽:636
設計資料庫表時索引的屬性 瀏覽:199
萬博企業網站管理系統 瀏覽:109
結伴旅遊app哪個好 瀏覽:36
jsjquery標簽特效 瀏覽:858
u盤文件在車上不顯示 瀏覽:637

友情鏈接