導航:首頁 > 編程知識 > 多項式如何編程

多項式如何編程

發布時間:2023-04-22 07:38:12

⑴ c++編程 多項式的乘法

#include <iostream>
#include<algorithm>
using namespace std;

class Polynomial;
class Term{//多項式的每一項
friend Polynomial;
public:
float coef;//系數
int exp;//指數
};

class Polynomial{//多項式類
friend ostream & operator<<(ostream &o,const Polynomial & poly);
public:
Polynomial();
Polynomial(const Polynomial & poly);
~Polynomial();
Polynomial operator+(const Polynomial & poly);//多項式加法
Polynomial operator*(const Polynomial & poly);//多項式乘法
float Eval(float x);//數x代入多項式求值
void NewTerm(float coef,int exp);//添加一項,若有相同的指數項,則合並
private:
void insertTerm(const Term & term);//項的有序插入
private:
Term *termArray;//非零系數項數組
int capacity;//數組大小
int terms;//非零系數的項數
};

Polynomial::Polynomial()
{
this->terms=0;
this->capacity=10;
termArray=new Term[this->capacity];
}

Polynomial::Polynomial(const Polynomial & b)
{
this->terms=0;
this->capacity=b.capacity;
termArray = new Term[this->capacity];
for(int i=0;i<b.terms;i++){
NewTerm(b.termArray[i].coef,b.termArray[i].exp);
}
}

Polynomial::~Polynomial()
{
delete [] termArray;
}

Polynomial Polynomial::operator+(const Polynomial & b)
{
Polynomial c;
int aPos=0;
int bPos=0;
while(aPos<terms && bPos<b.terms){
if(termArray[aPos].exp == b.termArray[bPos].exp){
float coef=termArray[aPos].coef+b.termArray[bPos].coef;
if(coef)c.NewTerm(coef,termArray[aPos].exp);
aPos++;bPos++;
}else if(termArray[bPos].exp < b.termArray[bPos].exp){
c.NewTerm(b.termArray[bPos].coef,b.termArray[bPos].exp);
bPos++;
}else{
c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
aPos++;
}
}
while (aPos < terms){
c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
aPos++;
}
while (bPos < b.terms){
c.NewTerm(b.termArray[bPos].coef,b.termArray[bPos].exp);
bPos++;
}
return c;
}

Polynomial Polynomial::operator*(const Polynomial & b)
{
Polynomial c;
for(int i=0; i<terms; i++){
for(int j=0; j<b.terms; j++){
float coef = termArray[i].coef*b.termArray[j].coef;
int exp = termArray[i].exp + b.termArray[j].exp;
c.NewTerm(coef,exp);
}
}
return c;
}
void Polynomial::NewTerm(float coef, int exp)
{
if(terms == capacity){
capacity *= 2;
Term *tmp = new Term[capacity];
(termArray,termArray+terms,tmp);
delete [] termArray;
termArray = tmp;
}
Term ATerm;
ATerm.coef=coef;ATerm.exp=exp;
insertTerm(ATerm);
}
void Polynomial::insertTerm(const Term & term)
{
int i;
for(i=0; i<terms && term.exp<termArray[i].exp; i++){
}
if(term.exp == termArray[i].exp){
termArray[i].coef += term.coef;
if(!termArray[i].coef){
for(int j=i; j<terms-1; j++)
termArray[j]= termArray[j+1];
terms--;
}
}else{
for(int j=terms-1; j>=i;j--)
termArray[j+1]=termArray[j];
termArray[i] = term;
terms++;
}
}

float Polynomial::Eval(float x)
{
float res=0.0;
for(int i=0;i<terms; i++){
res += termArray[i].coef * pow(x,termArray[i].exp);
}
return res;
}

ostream & operator<<(ostream & o,const Polynomial & poly)
{
for(int i=0;i<poly.terms-1;i++){
o<<poly.termArray[i].coef<<"x^"<<poly.termArray[i].exp<<" + ";
}
o<<poly.termArray[poly.terms-1].coef<<"x^"<<poly.termArray[poly.terms-1].exp;
return o;
}

void test()
{
Polynomial p1;
p1.NewTerm(3,2);
p1.NewTerm(2.1,3);

Polynomial p2;
p2.NewTerm(1,2);
p2.NewTerm(1,3);
p2.NewTerm(5,1);

cout<<"("<<p1<<") + ("<<p2<<") = "<<p1+p2<<endl;
cout<<"F(x=2) = "<<(p1+p2).Eval(2)<<endl;
cout<<"("<<p1<<") * ("<<p2<<") = "<<p1 * p2<<endl;
}

int main()
{
test();
system("Pause");
return 0;
}
#include <iostream>
#include<algorithm>
using namespace std;

class Polynomial;
class Term{//多項式的每一項
friend Polynomial;
public:
float coef;//系數
int exp;//指數
};
class Polynomial{//多項式類
friend ostream & operator<<(ostream &o,const Polynomial & poly);
public:
Polynomial();
Polynomial(const Polynomial & poly);
~Polynomial();
Polynomial operator+(const Polynomial & poly);//多項式加法
Polynomial operator*(const Polynomial & poly);//多項式乘法
float Eval(float x);//數x代入多項式求值
void NewTerm(float coef,int exp);//添加一項,若有相同的指數項,則合並
private:
void insertTerm(const Term & term);//項的有序插入
private:
Term *termArray;//非零系數項數組
int capacity;//數組大小
int terms;//非零系數的項數
};
Polynomial::Polynomial()
{
this->terms=0;
this->capacity=10;
termArray=new Term[this->capacity];
}
Polynomial::Polynomial(const Polynomial & b)
{
this->terms=0;
this->capacity=b.capacity;
termArray = new Term[this->capacity];
for(int i=0;i<b.terms;i++){
NewTerm(b.termArray[i].coef,b.termArray[i].exp);
}
}

Polynomial::
~Polynomial()
{
delete [] termArray;
}

Polynomial Polynomial::operator+(const Polynomial & b)
{
Polynomial c;
int aPos=0;
int bPos=0;
while(aPos<terms && bPos<b.terms){
if(termArray[aPos].exp == b.termArray[bPos].exp){
float coef=termArray[aPos].coef+b.termArray[bPos].coef;
if(coef)c.NewTerm(coef,termArray[aPos].exp);
aPos++;bPos++;
}else if(termArray[bPos].exp < b.termArray[bPos].exp){
c.NewTerm(b.termArray[bPos].coef,b.termArray[bPos].exp);
bPos++;
}else{
c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
aPos++;
}
}
while (aPos < terms){
c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
aPos++;
}
while (bPos < b.terms){
c.NewTerm(b.termArray[bPos].coef,b.termArray[bPos].exp);
bPos++;
}
return c;
}

Polynomial Polynomial::operator*(const Polynomial & b)
{
Polynomial c;
for(int i=0; i<terms; i++){
for(int j=0; j<b.terms; j++){
float coef = termArray[i].coef*b.termArray[j].coef;
int exp = termArray[i].exp + b.termArray[j].exp;
c.NewTerm(coef,exp);
}
}
return c;
}
void Polynomial::NewTerm(float coef, int exp)
{
if(terms == capacity){
capacity *= 2;
Term *tmp = new Term[capacity];
(termArray,termArray+terms,tmp);
delete [] termArray;
termArray = tmp;
}
Term ATerm;
ATerm.coef=coef;ATerm.exp=exp;
insertTerm(ATerm);
}
void Polynomial::insertTerm(const Term & term)
{
int i;
for(i=0; i<terms && term.exp<termArray[i].exp; i++){
}
if(term.exp == termArray[i].exp){
termArray[i].coef += term.coef;
if(!termArray[i].coef){
for(int j=i; j<terms-1; j++)
termArray[j]= termArray[j+1];
terms--;
}
}else{
for(int j=terms-1; j>=i;j--)
termArray[j+1]=termArray[j];
termArray[i] = term;
terms++;
}
}

float Polynomial::Eval(float x)
{
float res=0.0;
for(int i=0;i<terms; i++){
res += termArray[i].coef * pow(x,termArray[i].exp);
}
return res;
}

ostream & operator<<(ostream & o,const Polynomial & poly)
{
for(int i=0;i<poly.terms-1;i++){
o<<poly.termArray[i].coef<<"x^"<<poly.termArray[i].exp<<" + ";
}
o<<poly.termArray[poly.terms-1].coef<<"x^"<<poly.termArray[poly.terms-1].exp;
return o;
}

void test()
{
Polynomial p1;
p1.NewTerm(3,2);
p1.NewTerm(2.1,3);

Polynomial p2;
p2.NewTerm(1,2);
p2.NewTerm(1,3);
p2.NewTerm(5,1);

cout<<"("<<p1<<") + ("<<p2<<") = "<<p1+p2<<endl;
cout<<"F(x=2) = "<<(p1+p2).Eval(2)<<endl;
cout<<"("<<p1<<") * ("<<p2<<") = "<<p1 * p2<<endl;
}
int main()
{

test();

system("Pause");

return 0;
}
測試結果:
Cpp代碼
(2.1x^3 + 3x^2) + (1x^3 + 1x^2 + 5x^1) = 3.1x^3 + 4x^2 + 5x^1
F(x=2) = 50.8
(2.1x^3 + 3x^2) * (1x^3 + 1x^2 + 5x^1) = 2.1x^6 + 5.1x^5 + 13.5x^4 + 15x^3
請按任意鍵繼續. . .
(2.1x^3 + 3x^2) + (1x^3 + 1x^2 + 5x^1) = 3.1x^3 + 4x^2 + 5x^1
F(x=2) = 50.8
(2.1x^3 + 3x^2) * (1x^3 + 1x^2 + 5x^1) = 2.1x^6 + 5.1x^5 + 13.5x^4 + 15x^3
請按任意鍵繼續. . .

閱讀全文

與多項式如何編程相關的資料

熱點內容
為什麼e福州app登不上 瀏覽:963
jsfoutputlink 瀏覽:472
哪個網站可以聽南音 瀏覽:264
蘋果裝系統裝win7驅動 瀏覽:686
php判斷file是否有文件 瀏覽:979
和平精英使用什麼編程開發 瀏覽:102
f3文件 瀏覽:523
快手3d環繞音樂用什麼app 瀏覽:376
linux新增一個文件 瀏覽:440
消失的手機圖片在哪個文件夾里 瀏覽:610
word2010表格外框雙線內框單線 瀏覽:56
powermill如何提高編程速度 瀏覽:465
遙感30號衛星數據存在哪裡 瀏覽:846
請領導看文件應該用什麼詞 瀏覽:273
bt工具 瀏覽:86
js循環獲取最大值 瀏覽:846
如何把網站激活 瀏覽:453
pdf文件怎麼轉換成dwg 瀏覽:151
有哪些擴展名表示為圖鑒圖片文件 瀏覽:843
怎麼破解小米賬戶密碼是多少 瀏覽:864

友情鏈接