㈠ linux下的 socket编程问题!
第一个问题:
对,是那样的,用open打开文件,用read读取文件,在发送给对方,接收方接收到后,写入文件就可以了。不过在这个过程中最好别用字符串函数,除非你很熟悉。
第二个问题
首先你得去搞清楚什么是线程,什么是进程,fork出来的叫进程,pthread_create出来的才叫线程。服务器有很多种模型(多进程,多线程,select,epoll模型,这个我的blog上有,famdestiny.cublog.cn),不一定要用多进程。
给你写了个代码,自己先看看:
注意,在自己的目录下创建一个叫pserverb的文件,程序会把这个文件复制成test文件。你可以自己根据需要改改
server:
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#define SERV_PORT 5358
#define MAX_CONN 10
#define BUF_LEN 1024
void str_echo(FILE *fp, int sockfd){
ssize_t nread;
int file_fd;
char buf[BUF_LEN] = {0};
file_fd = open("test", O_WRONLY | O_TRUNC | O_CREAT, 0755);
while(1) {
bzero(buf, BUF_LEN);
if((nread = read(sockfd, buf, BUF_LEN)) == -1) {
if(errno == EINTR) {
continue;
}
else {
printf("readn error: %s\n", strerror(errno));
continue;
}
}
else if (nread == 0) {
break;
}
else {
printf("%s\n", buf);
write(file_fd, buf, nread);
}
}
close(file_fd);
}
void sig_chld(int sig){
pid_t pid;
int state;
while((pid = waitpid(-1, &state, WNOHANG)) > 0){
printf("child process %d exited.", pid);
}
return;
}
int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t cliaddrlen;
pid_t childpid;
struct sockaddr_in servaddr, cliaddr;
if((listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){
printf("socket error: %s\n", strerror(errno));
return 0;
}
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
if(bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) == -1){
printf("bind error: %s\n", strerror(errno));
return 0;
}
if(listen(listenfd, MAX_CONN) == -1){
printf("listen error: %s\n", strerror(errno));
return 0;
}
signal(SIGCHLD, sig_chld);
while(1){
cliaddrlen = sizeof(cliaddr);
if((connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddrlen)) == -1){
if(errno == EINTR){
continue;
}
else{
printf("accept error: %s\n", strerror(errno));
continue;
}
}
if((childpid = fork()) == 0){
close(listenfd);
str_echo(stdin, connfd);
exit(0);
}
else if(childpid > 0){
close(connfd);
}
else{
printf("fork error!\n");
continue;
}
}
}
client:
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#define SERV_ADDR "127.0.0.1"
#define SERV_PORT 5358
#define BUF_LEN 1024
void str_cli(char *path, int sockfd)
{
char sendbuf[BUF_LEN] = {0};
int fd, n;
if((fd = open("./pserverb", O_RDONLY)) == -1){
printf("%s\n", strerror(errno));
exit(0);
}
while((n = read(fd, sendbuf, BUF_LEN)) != 0) {
if(n < 0){
printf("%s\n", strerror(errno));
exit(0);
}
write(sockfd, sendbuf, n);
bzero(sendbuf, BUF_LEN);
}
close(fd);
return;
}
int main(int argc, char **argv)
{
int fd;
struct sockaddr_in servaddr;
fd = socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(SERV_ADDR);
servaddr.sin_port = htons(SERV_PORT);
if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) == -1) {
printf("connect error: %s\n", strerror(errno));
return 0;
}
str_cli(argv[1], fd);
return 0;
}
㈡ linux下socket编程初级问题,求助,急
你设断点查吧,我一下也看不出来
㈢ 面试必备:Binder进程通信原理
先简单概括性地说说Linux现有的所有进程间IPC方式:
管道(Pipe): 在创建时分配一个page大小的内存,缓存区大小比较有限;
消息队列(Message): 信息复制两次,额外的CPU消耗;不适合频繁或信息量大的通信;
共享内存(Share Memory): 无须复制,共享缓冲区直接附加到进程虚拟地址空间,速度快;但进程间的同步问题操作系统无法实现,必须各进程利用同步工具解决。
套接字(Socket): 作为更通用的接口,传输效率低,主要用于不同机器或跨网络的通信。
信号量(Semaphore): 常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此主要作为进程间以及同一进程内不模闹同线程之间的同步手段。
信号(Signal): 不适用于信息交换,更适用于进程中断控制,比如非法内存访问、杀死某个进程等。
从4个角度来展开对Binder的分析
(1)从性能的角度
数据拷贝次数: Binder数据拷贝只需要一次,而管道、消息队列、套接字都需要2次,但共享内存方式一次内存拷贝都不需要;从性能角度看,Binder性能仅次于共享内存。
(2)从稳定性的角度
Binder是基于C/S架构的,架构清晰明朗,Server端和Client端相对独立,稳定性较好;而共享内存实现方式复杂,没有Client端与Server端之别,需要充分考虑到访问临界资源的并发同步问题,否则可能会出现死锁等问题;从稳定性角度看,Binder架构优越于共享内存。
(3)从安全的角度
传统Linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身旦搭罩份;而Android作为一个开放的开源体系,手机安全显得额外重要,传统Linux IPC五任何保护措施,完全由上层协议来确保。
Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志。前面提到C/S架构, Android系统中对外只暴露Client端,Client端将任务发送给Server端,Server端会根据权限控制策略,判断UID/PID是否满足访问权限,目前权限控制很多时候是通过弹出权限询问对话框,让用户选择是否运行。
传统IPC只能由用户在数据包里填入UID/PID;另外,可靠的身份标记只有由IPC机制本身在内核中添加。其次传统IPC访问接入点是开发的,无法建立私有通道。从安全角度,Binder的安全性更高。
(4)从语言层面的角度
大家都知道Linux是基于C语言(面向过程的语言),而Android是基于Java语言(面向对象的语句)。Binder恰枝液恰符合面向对象思想,将进程间通信转化为对某个Binder对象的引用,调用该对象的方法。而其独特之处在于Binder对象是一个可以跨进程引用的对象,它的实体位于一个进程,而它的引用却遍布于系统的各个进程之中。Binder模糊了进程边界,淡化了进程间通信过程,让整个系统仿佛运行于同一个面向对象的程序之中。
Binder框架定义了四个角色:Server,Client,ServiceManager(以后简称SM)以及Binder驱动。其中Server,Client,SM运行于用户空间,驱动运行于内核空间。
ServiceManager与实名Binder
Client获得实名Binder的引用
Server向SM注册了Binder实体及其名字后,Client就可以通过名字获得该Binder的引用了。
匿名Binder
并不是所有Binder都需要注册给SM广而告之的。Server端可以通过已经建立的Binder连接将创建的Binder实体传给Client,当然这条已经建立的Binder连接必须是通过实名Binder实现。由于这个Binder没有向SM注册名字,所以是个匿名Binder。Client将会收到这个匿名Binder的引用,通过这个引用向位于Server中的实体发送请求。匿名Binder为通信双方建立一条私密通道,只要Server没有把匿名Binder发给别的进程,别的进程就无法通过穷举或猜测等任何方式获得该Binder的引用,向该Binder发送请求。
传统IPC方式中,数据是怎样从发送端到达接收端的呢? 通常的做法是: 发送方 将准备好的数据存放在缓存区中,通过系统API调用进入 内核 中。 内核服务程序 在内核空间分配内存,将数据从 发送方 缓存区复制到内核缓存区中。 接收方 读数据是也要提供一块缓存区, 内核 将数据从内核缓存区拷贝到 接收方 提供的缓存区中并唤醒接收线程,完成一次数据发送。这种存储-转发机制有两个缺陷:首先是效率低下,需要做两次拷贝(用户空间->内核空间->用户空间)。Linux使用_from_user()和_to_user()实现这两个跨空间拷贝。其次是接收数据的缓存要由接收方提供,可接收方不知道到底要多大的缓存才够用。只能开辟尽量打的空间或先调用API接收消息头获得消息体大小,再开辟适当的空间接收消息体。两种做法都有不足,不是浪费空间就是浪费时间。
Binder采用一种全新策略:由Binder驱动负责管理数据接收缓存。 Binder驱动通过实现mmap()来创建数据接收的缓存空间。
这样Binder的接收方就有了一片大小为MAP_SIZE的接收缓存区。mmap()的返回值是内存映射在用户空间的地址,不过这段空间是由驱动管理,用户不必直接访问(映射类型为PROT_READ,只读映射)。
参考文献
Android Binder机制原理(史上最强理解,没有之一)
㈣ Linux Socket编程求助啊,一个服务器和多个客户端通信问题求助
如果客户端并发连接数不是很大,比如50个以下,可以用如下模型:
建立一个监听主线程,循环监听端口。
当有客户端连接时,建立客户端通讯线程,并保留客户端socket到链表中。
当客户端断开连接时,从socket链表中删除该socket。
㈤ linux 下的socket怎么测试是否成功
增加对Linux socket连接 最近的一个项目的最大连接数是模拟多个套接字的客户端和服务器之间的通信。 Linux系统由于Linux的限制,/在include / linux / posix_types.h文件中有如下的宏定义: #UNDEF __FD_SETSIZE 的#define __FD_SETSIZE 1024 这个宏是当你需要超亮梁过1024个FD,如select()函数将监听错误定义的最大文件描述符1024。所以,你需要改变1024所需要的数量,但不超过65,535。但这是不够的仅仅。 第二步你需要的文件的进程敬耐运打开的最大数量。具体的步骤是: 1,CD /usr/src/linux-2.4/include/linux 2,六limits.h中编辑文件: 的#define NR_OPEN 90240原1024 1024 的#define OPEN_MAX 10240原值 3值,六fs.h文件 的#define INR_OPEN 10240原值1024 的#define NR_FILE 65536 8192原始值,内存64 / 1M比例计算的值,1G内存的计算公式为:64 * 10. 4 1024 的#define NR_RESERVED_FILES 128原值,CD /usr/src/linux-2.4/include/net BR>五,六tcp.h中 的#define TCP_LHTABLE_SIZE的32 128原值易听听队列,建立大。 - 设为与内存相关的打开文件的最大数量,系统会减慢太多。 第三步是编亩瞎译内核,具体步骤是: 1.使清洁 2.化妆 3. make dep的 4.做的bzImage 将导入的bzImage /启动重新启动系统! wc命令,以目前在建立套接字连接数统计| 与超过1024个客户端和服务器到服务器的终端使用netstat的连接。
㈥ 简述linux下,从socket写入和读取的函数,read/write和send/recv函数的含义并解释其接口意义简答题
Ssize_t write(int fd,const void *buf,size_t nbytes);
write的返回值大于0,表示写了部分数据或者是全部的数据,这样用一个while循环不断的写入数据,但是循环过程中的buf参数和nbytes参数是我们自己来更新的,返回值小于0,此时出错了,需要根据错误类型进行相应的处理
Ssize_t read(int fd,void *buf,size_t nbyte)
Read函数是负责从fd中读取内容,当读取成功时,read返回实际读取到的字节数,如果返回值是0,表示已经读取到文件的结束了,小于0表示是读取错误。
Recv函数和send函数
Recv函数和read函数提供了read和write函数一样的功能,不同的是他们提供了四个参数。
Int
recv(int fd,void *buf,int len,int flags)
Int
send(int fd,void *buf,int len,int flags)
前面的三个参数和read、write函数是一样的。第四个参数可以是0或者是一下组合:
MSG_DONTROUTE:不查找表
是send函数使用的标志,这个标志告诉IP,目的主机在本地网络上,没有必要查找表,这个标志一般用在网络诊断和路由程序里面。
MSG_OOB:接受或者发生带外数据
表示可以接收和发送带外数据。
MSG_PEEK:查看数据,并不从系统缓冲区移走数据
是recv函数使用的标志,表示只是从系统缓冲区中读取内容,而不清楚系统缓冲区的内容。这样在下次读取的时候,依然是一样的内容,一般在有过个进程读写数据的时候使用这个标志。
MSG_WAITALL:等待所有数据
是recv函数的使用标志,表示等到所有的信息到达时才返回,使用这个标志的时候,recv返回一直阻塞,直到指定的条件满足时,或者是发生了错误。
㈦ Linux下socket并发连接数怎么设置
并发socket连接数的多少决定于系统资源的多少,没有一个常值的.在实际开发或者linux系统管理中也会根据需要进行相应的设置.
1.一般来说每一个网络连接,都会建立相应的socket句柄,同时每个连接也会有标准输入输出等基本的文件文件句柄,而且每一个socket连接都是进行文件操作的,因此连接数决定于系统资源.
2.Linux上一般可以通过ulimit来进行相应的资源限制,默认能打开的文件描述符自己可以查看.如下图所示:
3.ulimit的命令格式:ulimit [-acdfHlmnpsStvw] [size]
参数说明:
-H 设置硬资源限制.
-S 设置软资源限制.
-a 显示当前所有的资源限制.
-c size:设置core文件的最大值.单位:blocks
-d size:设置数据段的最大值.单位:kbytes
-f size:设置创建文件的最大值.单位:blocks
-l size:设置在内存中锁定进程的最大值.单位:kbytes
-m size:设置可以使用的常驻内存的最大值.单位:kbytes
-n size:设置内核可以同时打开的文件描述符的最大值.单位:n
-p size:设置管道缓冲区的最大值.单位:kbytes
-s size:设置堆栈的最大值.单位:kbytes
-t size:设置CPU使用时间的最大上限.单位:seconds
-v size:设置虚拟内存的最大值.单位:kbytes
-u <程序数目> 用户最多可开启的程序数目
㈧ 面试笔记-Socket MQTT Websocket
1.Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。
2.MQTT协议是应用层协议不依赖长连接,适合弱网络。通过topic缓存信息。符合物联网设备的使用场景。因为通过topic缓存信息,因此可以实现通过topic与多个端的一对多连接,而不是设备与设备的多对多连接,节省了能耗及带宽。
MQTT的心跳,及非信息的报文,较Websocket更少,更节省带宽及能耗。更适用于物理网的多种网络协议。
3.WebSocket和Http一样在应用层,提供使用一个TCP连接进行双向通讯的机制,包括网络协议和API,以取代网页和服务器采用HTTP轮询进行双向通讯的机制。 本质上来说,WebSocket是不限于HTTP协议的,但是由于现存大量的HTTP基础设施,代理,过滤,身份认证等等,WebSocket借用HTTP和HTTPS的端口。由于使用HTTP的端口,因此TCP连接建立后的握手消息是基于HTTP的,由服务器判断这是一个HTTP协议,还是WebSocket协议。 WebSocket连接除了建立和关闭时的握手,数据传输和HTTP没丁点关系了。
Socket 连接,至少需要一对套接字,分为 clientSocket,serverSocket 连接分为3个步骤:
(1) 服务器监听:服务器并不定位具体客户端的套接字,而是时刻处于监听状态;
(2) 客户端请求:客户端的套接字要描述它要连接的服务器的套接字,提供地址和端口号,然后向服务器套接字提出连接请求;
(3) 连接确认:当服务器套接字收到客搭顷饥户端套接字发来的请求后,就响应客知返户端套接字的请求,并建立一个新的线程,把服务器端的套接字的描述发给客户端。一旦客户端确认了此描述,就正式建立连接。而服务器套接字继续处于监听状态,继续接收其他客户端套接字的连接请求.
Socket为长连接:通常情况下Socket 连接就是 TCP 连接,因此 Socket 连接一旦建立,通讯双方开始互发数据内容,直到双方断开连接。在实际应用中,由于网络节点过多,在传输过程中,会被节点断开连接,因此要通过轮询高速网络,该节点处于活跃状态。
很多情况下,都乎缺是需要服务器端向客户端主动推送数据,保持客户端与服务端的实时同步。
若双方是 Socket 连接,可以由服务器直接向客户端发送数据。
若双方是 HTTP 连接,则服务器需要等客户端发送请求后,才能将数据回传给客户端。
因此,客户端定时向服务器端发送请求,不仅可以保持在线,同时也询问服务器是否有新数据,如果有就将数据传给客户端。
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是轻量级基于代理的发布/订阅的消息传输协议,设计思想是开放、简单、轻量、易于实现。这些特点使它适用于受限环境。
例如:
①网络代价昂贵,带宽低、不可靠。
②在嵌入设备中运行,处理器和内存资源有限。
该协议的特点有:
①使用发布/订阅消息模式,提供一对多的消息发布,解除应用程序耦合。 ②对负载内容屏蔽的消息传输。
③使用 TCP/IP 提供网络连接。
④有三种消息发布服务质量:
⑤"至多一次",消息发布完全依赖底层 TCP/IP 网络。会发生消息丢失或重复。这一级别可用于如下情况,环境传感器数据,丢失一次读记录无所谓,因为不久后还会有第二次发送。
⑥"至少一次",确保消息到达,但消息重复可能会发生。
⑦"只有一次",确保消息到达一次。这一级别可用于如下情况,在计费系统中,消息重复或丢失会导致不正确的结果。
⑧小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量。
⑨使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制。
实现MQTT协议需要客户端和服务器端通讯完成,在通讯过程中,MQTT协议中有三种身份:发布者(Publish)、代理(Broker)(服务器)、订阅者(Subscribe)。其中,消息的发布者和订阅者都是客户端,消息代理是服务器,消息发布者可以同时是订阅者。
有三种消息发布服务质量:
“至多一次”,消息发布完全依赖底层TCP/IP网络。会发生消息丢失或重复。这一级别可用于如下情况,环境传感器数据,丢失一次读记录无所谓,因为不久后还会有第二次发送。这一种方式主要普通APP的推送,倘若你的智能设备在消息推送时未联网,推送过去没收到,再次联网也就收不到了。qos=0
“至少一次”,确保消息到达,但消息重复可能会发生。qos=1
“只有一次”,确保消息到达一次。在一些要求比较严格的计费系统中,可以使用此级别。在计费系统中,消息重复或丢失会导致不正确的结果。这种最高质量的消息发布服务还可以用于即时通讯类的APP的推送,确保用户收到且只会收到一次。qos=2
Topic,可以理解为消息的类型,订阅者订阅(Subscribe)后,就会收到该主题的消息内容(payload);
payload,可以理解为消息的内容,是指订阅者具体要使用的内容。
在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、可变头(Variable header)、消息体(payload)三部分构成。MQTT数据包结构如下:
固定头(Fixed header)。存在于所有MQTT数据包中,表示数据包类型及数据包的分组类标识。
可变头(Variable header)。存在于部分MQTT数据包中,数据包类型决定了可变头是否存在及其具体内容。
消息体(Payload)。存在于部分MQTT数据包中,表示客户端收到的具体内容。
WebSocket则提供使用一个TCP连接进行双向通讯的机制,包括网络协议和API,以取代网页和服务器采用HTTP轮询进行双向通讯的机制。 本质上来说,WebSocket是不限于HTTP协议的,但是由于现存大量的HTTP基础设施,代理,过滤,身份认证等等,WebSocket借用HTTP和HTTPS的端口。由于使用HTTP的端口,因此TCP连接建立后的握手消息是基于HTTP的,由服务器判断这是一个HTTP协议,还是WebSocket协议。 WebSocket连接除了建立和关闭时的握手,数据传输和HTTP没丁点关系了。 由此可知两者的应用场景不一样: MQTT是为了物联网场景设计的基于TCP的Pub/Sub协议,有许多为物联网优化的特性,比如适应不同网络的QoS、层级主题、遗言等等。 WebSocket是为了HTML5应用方便与服务器双向通讯而设计的协议,HTTP握手然后转TCP协议,用于取代之前的Server Push、Comet、长轮询等老旧实现。 两者之所有有交集,是因为一个应用场景:如何通过HTML5应用来作为MQTT的客户端,以便接受设备消息或者向设备发送信息,那么MQTT over WebSocket自然成了最合理的途径了。
㈨ 面试时怎么教熟悉linux网络编程
不知你的水平处于哪个阶段,假如你是学嵌入式的,刚开始接触我建议你看华清远见写的《嵌入式Linux应用程序开发》虽然这本书上的好多是从后面我要说的书上抄的(嘿嘿,技术吗不能完全这样说)原因是:比较适合初学者,教材适合自己的才是王道,不能让小学生成天看牛津高级词典,一下子把人就吓住,刚开始要学的不要太多 不要指望一下子就明白全部,太厚的书,太全了 也太多,当然这个只是说你的水平在初级阶段
水平还行就看看国外的经典教材,当然是 W.Richard Stevens老人家写的经典3部(可惜他老人家现在走了 不能给我们再写经典 太可惜了)
1)Advanced Programming In The UNIX Environment 中文翻译名为《UNIX环境高级编程》译者:尤晋元,翻译的还行(在这里我要批评有些人成天给翻译的书挑刺 老说某某翻译的不好 甚至打骂,我说一句:有本事你看英文版行了,英语不行就不要叫,再说你自己看了多少,也许你只是成天跟着吆喝的人)
2)Unix Network Programing 中文翻译名为《UNIX网络编程》有两卷 清华大学,谁翻译的 呵呵 没注意
第一卷讲BSD Socket网络编程接口和另外一种网络编程接口的,不过现在一般都用BSD Socket,所以这本书只要看大约一半多就可以了。第二卷没有设计到网络的东西,主要讲进程间通讯和Posix线程。所以看了《UNIX环境高级编程》以后,就可以看它了,基本上系统的东西就由《UNIX环境高级编程》和《UNIX网络编程》vol2概括了。看过《UNIX网络编程》以后,您就会知道系统编程的绝大部分编程技巧,即使卷一是讲网络编程的。
3)《TCP/IP祥解》一共三卷,卷一讲协议,卷二讲实现,卷三讲编程应用。我没有怎么看过。,但是据说也很经典的,因为我没有时间看卷二,所以不便评价。
㈩ linux socket是什么意思
socket接口是TCP/IP网络的API,socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。要学Internet上的TCP/IP网络编程,必须理解socket接口。
socket接口设计者最先是将接口放在Unix操作系统里面的。如果了解Unix系统的输入和输出的话,就很容易了解socket了。网络的 socket数据传输是一种特殊的I/O,socket也是一种文件描述符。socket也具有一个类似于打开文件的函数调用socket(),该函数返回一个整型的socket描述符,随后的连接建立、数据传输等操作都是通过该socket实现的。常用的socket类型有两种:流式socket (SOCK_STREAM)和数据报式socket(SOCK_DGRAM)。流式是一种面向连接的socket,针对于面向连接的TCP服务应用;数据报式socket是一种无连接的socket,对应于无连接的UDP服务应用。
socket建立
为了建立socket,程序可以调用socket函数,该函数返回一个类似于文件描述符的句柄。socket函数原型为:
int socket(int domain, int type, int protocol); domain指明所使用的协议族,通常为PF_INET,表示互联网协议族(TCP/IP协议族);type参数指定socket的类型: SOCK_STREAM 或SOCK_DGRAM,socket接口还定义了原始socket(SOCK_RAW),允许程序使用低层协议;protocol通常赋值 "0"。 socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。
socket描述符是一个指向内部数据结构的指针,它指向描述符表入口。调用socket函数时,socket执行体将建立一个socket,实际上 "建立一个socket"意味着为一个socket数据结构分配存储空间。socket执行体为你管理描述符表。 两个网络程序之间的一个网络连接包括五种信息:通信协议、本地协议地址、本地主机端口、远端主机地址和远端协议端口。socket数据结构中包含这五种信息。
socket配置
通过socket调用返回一个socket描述符后,在使用socket进行网络传输以前,必须配置该socket。面向连接的socket客户端通过调用connect函数在socket数据结构中保存本地和远端信息。无连接socket的客户端和服务端以及面向连接socket的服务端通过调用 bind函数来配置本地信息。
bind函数将socket与本机上的一个端口相关联,随后你就可以在该端口监听服务请求。bind函数原型为:
int bind(int sockfd,struct sockaddr*my_addr, int addrlen); Sockfd是调用socket函数返回的socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。
struct sockaddr结构类型是用来保存socket信息的:
struct sockaddr {
unsigned short sa_family; /*地址族,AF_xxx*/ char sa_data[14]; /*14字节的协议地址*/ };
sa_family一般为AF_INET,代表Internet(TCP/IP)地址族;sa_data则包含该socket的IP地址和端口号。 另外还有一种结构类型: struct sockaddr_in {
short int sin_family; /*地址族*/
unsigned short int sin_port; /*端口号*/ struct in_addr sin_addr; /*IP地址*/
unsigned char sin_zero[8];/*填0保持与sockaddr同样大小*/ };
这个结构更方便使用。sin_zero用来将sockaddr_in结构填充到与struct sockaddr同样的长度,可以用bzero()或memset()函数将其置为零。指向
sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向 sockaddr_in的指针转换为指向sockaddr的指针;或者相反。 使用bind函数时,可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号:
my_addr.sin_port=0; /* 系统随机选择一个未被使用的端口号*/ my_addr.sin_addr.s_addr=INADDR_ANY; /* 填入本机IP地址*/
通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。
注意在使用bind函数是需要将sin_port和sin_addr转换成为网络字节优先顺序;而sin_addr则不需要转换。
计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换,否则就会出现数据不一致。
htonl():把32位值从主机字节序转换成网络字节序 htons():把16位值从主机字节序转换成网络字节序 ntohl():把32位值从网络字节序转换成主机字节序 ntohs():把16位值从网络字节序转换成主机字节序
bind()函数在成功被调用时返回0;出现错误时返回 "-1"并将errno置为相应的错误号。需要注意的是,在调用bind函数时一般不要将端口号置为小于1024的值,因为1到1024是保留端口号,你可以选择大于1024中的任何一个没有被占用的端口号。
连接建立
面向连接的客户程序使用connect函数来配置socket并与远端服务器建立一个TCP连接,其函数原型为:
int connect(int sockfd, struct sockaddr*serv_addr,int addrlen); Sockfd 是socket函数返回的socket描述符;serv_addr是包含远端主机IP地址和端口号的指针;addrlen是远端地质结构的长度。 connect函数在出现错误时返回-1,并且设置errno为相应的错误码。
进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,socket执行体为你的程序自动选择一个未被占用的端口,并通知你的程序数据什么时候到达端口。
connect函数启动和远端主机的直接连接。只有面向连接的客户程序使用socket时才需要将此socket与远端主机相连。无连接协议从不建立直接连接。面向连接的服务器也从不启动一个连接,它只是被动的在协议端口监听客户的请求。
listen函数使socket处于被动的监听模式,并为该socket建立一个输入数据队列,将到达的服务请求保存在此队列中,直到程序处理它们。 int listen(int sockfd, int backlog);
Sockfd 是socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)。Backlog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。如果一个服务请求到来时,输入队列已满,该socket将拒绝连接请求,客户将收到一个出错信息。
当出现错误时listen函数返回-1,并置相应的errno错误码。
accept()函数让服务器接收客户的连接请求。在建立好输入队列后,服务器就调用accept函数,然后睡眠并等待客户的连接请求。 int accept(int sockfd, void*addr, int*addrlen);
sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。出现错误时accept函数返回-1并置相应的errno值。 首先,当accept函数监视的 socket收到连接请求时,socket执行体将建立一个新的socket,执行体将这个新socket和请求连接进程的地址联系起来,收到服务请求的初始socket仍可以继续在以前的 socket上监听,同时可以在新的socket描述符上进行数据传输操作。 数据传输
send()和recv()这两个函数用于面向连接的socket上进行数据传输。 int send(int sockfd, const void*msg, int len, int flags);
Sockfd是你想用来传输数据的socket描述符;msg是一个指向要发送数据的指针;Len是以字节为单位的数据的长度;flags一般情况下置为0(关于该参数的用法可参照man手册)。
send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。在程序中应该将send()的返回值与欲发送的字节数进行比较。当send()返回值与len不匹配时,应该对这种情况进行处理。
int recv(int sockfd,void*buf,int len,unsigned int flags);