导航:首页 > 编程系统 > linux内存断点原理

linux内存断点原理

发布时间:2022-09-17 12:32:03

linux系统基本的内存管理知识讲解

Linux系统基本的内存管理知识讲解

内存是Linux内核所管理的最重要的资源之一。内存管理系统是操作系统中最为重要的部分,因为系统的物理内存总是少于系统所需要的内存数量。虚拟内存就是为了克服这个矛盾而采用的策略。系统的虚拟内存通过在各个进程之间共享内存而使系统看起来有多于实际内存的内存容量。Linux支持虚拟内存, 就是使用磁盘作为RAM的扩展,使可用内存相应地有效扩大。核心把当前不用的内存块存到硬盘,腾出内存给其他目的。当原来的内容又要使用时,再读回内存。

一、内存使用情况监测

(1)实时监控内存使用情况

在命令行使用“Free”命令可以监控内存使用情况

代码如下:

#free

total used free shared buffers cached

Mem: 256024 192284 63740 0 10676 101004

-/+ buffers/cache: 80604 175420

Swap: 522072 0 522072

上面给出了一个256兆的RAM和512兆交换空间的'系统情况。第三行输出(Mem:)显示物理内存。total列不显示核心使用的物理内存(通常大约1MB)。used列显示被使用的内存总额(第二行不计缓冲)。 free列显示全部没使用的内存。Shared列显示多个进程共享的内存总额。Buffers列显示磁盘缓存的当前大小。第五行(Swap:)对对换空间,显示的信息类似上面。如果这行为全0,那么没使用对换空间。在缺省的状态下,free命令以千字节(也就是1024字节为单位)来显示内存使用情况。可以使用—h参数以字节为单位显示内存使用情况,或者可以使用—m参数以兆字节为单位显示内存使用情况。还可以通过—s参数使用命令来不间断地监视内存使用情况:

#free –b –s2

这个命令将会在终端窗口中连续不断地报告内存的使用情况,每2秒钟更新一次。

(2)组合watch与 free命令用来实时监控内存使用情况:

代码如下:

#watch -n 2 -d free

Every 2.0s: free Fri Jul 6 06:06:12 2007

total used free shared buffers cached

Mem: 233356 218616 14740 0 5560 64784

-/+ buffers/cache: 148272 85084

Swap: 622584 6656 615928

watch命令会每两秒执行 free一次,执行前会清除屏幕,在同样位置显示数据。因为 watch命令不会卷动屏幕,所以适合出长时间的监测内存使用率。可以使用 -n选项,控制执行的频率;也可以利用 -d选项,让命令将每次不同的地方显示出来。Watch命令会一直执行,直到您按下 [Ctrl]-[C] 为止。

二、虚拟内存的概念

(1)Linux虚拟内存实现机制

Linux虚拟内存的实现需要六种机制的支持:地址映射机制、内存分配回收机制、缓存和刷新机制、请求页机制、交换机制、内存共享机制。

首先内存管理程序通过映射机制把用户程序的逻辑地址映射到物理地址,在用户程序运行时如果发现程序中要用的虚地址没有对应的物理内存时,就发出了请求页要求;如果有空闲的内存可供分配,就请求分配内存(于是用到了内存的分配和回收),并把正在使用的物理页记录在缓存中(使用了缓存机制)。 如果没有足够的内存可供分配,那么就调用交换机制,腾出一部分内存。另外在地址映射中要通过TLB(翻译后援存储器)来寻找物理页;交换机制中也要用到交换缓存,并且把物理页内容交换到交换文件中后也要修改页表来映射文件地址。

(2)虚拟内存容量设定

也许有人告诉你,应该分配2倍于物理内存的虚拟内存,但这是个不固定的规律。如果你的物理保存比较小,可以这样设定。如果你有1G物理内存或更多的话,可以缩小一下虚拟内存。Linux会把大量的内存用做Cache的,但在资源紧张时回收回.。你只要看到swap为0或者很小就可以放心了,因为内存放着不用才是最大的浪费。

三、使甩vmstat命令监视虚拟内存使用情况

vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存、进程、CPU活动进行监视。它是对系统的整体情况进行统计,不足之处是无法对某个进程进行深入分析。通常使用vmstat 5 5(表示在5秒时间内进行5次采样)命令测试。将得到一个数据汇总它可以反映真正的系统情况。

代码如下:

#vmstat 5 5

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

r b swpd free buff cache si so bi bo in cs us sy id wa

1 0 62792 3460 9116 88092 6 30 189 89 1061 569 17 28 54 2

0 0 62792 3400 9124 88092 0 0 0 14 884 434 4 14 81 0

0 0 62792 3400 9132 88092 0 0 0 14 877 424 4 15 81 0

1 0 62792 3400 9140 88092 0 0 0 14 868 418 6 20 74 0

1 0 62792 3400 9148 88092 0 0 0 15 847 400 9 25 67 0

vmstat命令输出分成六个部分:

㈡ 详解Linux系统内存知识及调优方案

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。对于整个操作系统来说,内存可能是最麻烦的的设备。而其性能的好坏直接影响着整个操作系统。

我们知道CPU是不能与硬盘打交道的,只有数据被载入到内存中才可以被CPU调用。cpu在访问内存的时候需要先像内存监控程序请求,由监控程序控制和分配内存的读写请求,这个监控程序叫做MMU(内存管理单元)。下面以32位系统来说明内存的访问过程:

32位的系统上每一个进程在访问内存的时候,每一个进程都当做自己有4个G的内存空间可用,这叫虚拟内存(地址),虚拟内存转化成物理内存是通过MMU来完成的。为了能够从线性地址转换成物理地址,需要page table(页表)的内存空间,page table要载入到MMU上。为了完成线性地址到物理地址的映射,如果按照1个字节1个字节映射的话,需要一张非常大的表,这种转换关系会非常的复杂。因此把内存空间又划分成了另外一种存储单元格式,通常为4K。在不同的硬件平台上,它们的大小一般是不一样的,像x86 32位的有4k的页;而64位的有4k页,2M页,4M页,8M页等等,默认都是4k的。每一个进程一般而言都有自己的页路径和页表映射机制,不管那一个页表都是由内核加载的。每一个进程只能看到自己的线性地址空间,想要增加新的内存的时候,只能在自己的线性地址空间中申请,并且申请后一定是通过操作系统的内核映射到物理地址空间中去找那么一段空间,并且告诉线性地址空间准备好了,可以访问,并且在page table中增加一条映射关系,于是就可以访问物理内存了,这种叫做内存分配。但是新的申请一定是通过操作的内核到物理内存中去找那么一段空间,并且告诉线性地址空间好了,可以建设映射关系,最终page table建立映射关系。

这反映了上述描述过程的大体情况。可以看到每一个用户程序都会有自己的页表,并且映射到对应的主存储器上去。

根据上述文字和图表的描述可以发现2个问题:

1.每个进程如果需要访问内存的时候都需要去查找page table的话,势必会造成服务器的性能底下

2.如果主存储器的内存满了以后,应用程序还需要调用内存的时候怎么办

对于第一个问题,我们就需要借助TLB(Translation Lookaside Buffer)翻译后备缓冲器。TLB是一个内存管理单元,它可以用于改进虚拟地址到物理地址转换速度的缓存。这样每次在查找page table的时候就可以先去TLB中查找相应的页表数据,如果有就直接返回,没有再去查找page table,并把查找到的结果缓存中TLB中。TLB虽然解决了缓存的功能,但是在那么page table中查找映射关系仍然很慢,所以又有了page table的分级目录。page table可以分为1级目录,2级目录和偏移量

但是一个进程在运行的时候要频繁的打开文件,关闭文件。这就意味着要频繁的申请内存和释放内存。有些能够在内存中缓存数据的那些进程,他们对内存的分配和回收更多,那么每一次分配都会在页表中建立一个对应项。所以,就算内存的速度很快,大量频繁的同一时间分配和释放内存,依然会降低服务器的整体性能。当然内存空间不够用的时候,我们称为oom(out of memory,内存耗尽)。当内存耗尽的时候,,整个操作系统挂了。这种情况下我们可以考虑交换分区,交换分区毕竟是由硬盘虚拟出来的内存,所以其性能与真正的内存相比,差了很多,所以要尽力避免使用交换分区。有物理内存空间的时候尽量保证全部使用物理内存。cpu无论如何是不能给交换内存打交道的,它也只能给物理内存打交道,能寻址的空间也只能是物理内存。所以当真正物理内存空间不够用的时候,会通过LRU算法把其中最近最少使用的内存放到交换内存中去,这样物理内存中的那段空间就可以供新的程序使用了。但是这样会引发另外的一个问题,即原来的进程通过page table寻找的时候,那一段空间的数据已经不属于它了。所以此刻cpu发送通知或者异常告诉这个程序,这个地址空间已不属于它,这个时候可能会出现2种情况:

1.物理内存有可用的空间可用:这个时候cpu会根据以前的转换策略会把交换分区中的那段内存重新送到物理内存中去,但是转换过来的空间地址不一定会是以前的那一段空间地址,因为以前的那一段空间地址可能已经被别人使用了。

2.物理内存没有可用的空间可用:这个时候依然会使用LRU算发把当前物理地址空间上最近最少使用的空间地址转换到交换内存中去,并把当前进程需要的这断在交换空间中的内存送到物理内存空间中去,并且重新建立映射关系。

上述通知或者异常出现的情况,通常叫做缺页异常。缺页异常也分为大异常和小异常两种。大异常就是访问的数据内存中没有,不的不去硬盘上加载,无论是从交换内存中还是直接从磁盘的某个文件系统上,反正需要从硬盘上去加载,这种异常加载需要很长时间。小异常就是进程之间通过共享内存,第二个进程访问的时候,查看本地的内存映射表没有,但是其它进程已经拥有了这个内存页,所以可以直接映射,这种异常加载需要的时间一般很短。

在操作系统开机的时候,每一个io设备都会像cpu申请一些列的随机端口,这种端口叫做io端口。在IBM PC体系结构中,I/O地址空间一共提供了65,536个8位的I/O端口。正是这些io端口的存在,cpu可以与io设备进行读写交互的过程。在执行读写操作时,CPU使用地址总线选择所请求的I/O端口,使用数据总线在CPU寄存器和端口之间传送数据。I/O端口还可以被映射到物理地址空间:因此,处理器和I/O设备之间的通信就可以直接使用对内存进行操作的汇编语言指令(例如,mov、and、or等等)。现代的硬件设备更倾向于映射I/O,因为这样处理的速度较快,并可以和DMA结合起来使用。这样io在和内存传数据的时候就不需要通过cpu,cpu把总线的控制权交给DMA,每次io传数据的时候就调用DMA一次,就把cpu给解放了出来。当数据传输完了以后,DMA通知给cpu中断一次。DMA在运行的时候对整个总线有控制权限,当cpu发现有其它进程需要使用总线的时候,二者就会产生争用。这个时候,在总线控制权的使用上,CPU和DMA具有相等的权限。只要CPU委托给了DMA,就不能随意的收回这个委托,就要等待DMA的用完。

如果没有其它进程可以运行,或者其它进程运行的时间非常短,这个时候CPU发现我们的IO仍然没有完成,那就意味着,CPU只能等待IO了。CPU在时间分配里面有个iowait的值,就是CPU在等待IO花费的时间。有些是在同步调用过程中,CPU必须要等待IO的完成;否者CPU可以释放IO的传输在背后自动完成,CPU自己去处理其它的事情。等硬盘数据传输完成以后,硬盘只需要像CPU发起一个通知即可。CPU外围有一种设备,这个设备叫做可编程中断控制器。每一个硬件设备为了给CPU通信,在刚开机的时候,在BIOS实现检测的时候,这个设备就要到可编程中断控制器上去注册一个所谓的中断号。那么这个号码就归这个硬件使用了。当前主机上可能有多个硬件,每一个硬件都有自己的号码,CPU在收到中断号以后,就能够通过中断相量表查找到那个硬件设备进行中断。并且就由对应的IO端口过来处理了。

CPU正在运行其它进程,当一个中断请求发过来的时候,CPU会立即终止当前正在处理的进程,而去处理中断。当前CPU挂起当前正在处理的进程,转而去执行中断的过程,也叫做中断切换。只不过,这种切换在量级别上比进程切换要低一些,而且任何中断的优先级通常比任何进程也要高,因为我们指的是硬件中断。中断还分为上半部和下半部,一般而言,上半部就是CPU在处理的时候,把它接进来,放到内存中,如果这个事情不是特别紧急(CPU或者内核会自己判断),因此在这种情况下,CPU回到现场继续执行刚才挂起的进程,当这个进程处理完了,再回过头来执行中断的下半部分。

在32位系统中,我们的内存(线性地址)地址空间中,一般而言,低地址空间有一个G是给内核使用的,上面3个G是给进程使用的。但是应该明白,其实在内核内存当中,再往下,不是直接这样划分的。32位系统和64位系统可能不一样(物理地址),在32位系统中,最低端有那么10多M的空间是给DMA使用的。DNA的总线宽度是很小的,可能只有几位,所以寻址能力很有限,访问的内存空间也就很有限。如果DMA需要复制数据,而且自己能够寻址物理内存,还可以把数据直接壮哉进内存中去,那么就必须保证DMA能够寻址那段内存才行。寻址的前提就是把最低地址断M,DA的寻址范围内的那一段给了DMA。所以站在这个角度来说,我们的内存管理是分区域的。

在32位系统上,16M的内存空间给了ZONE_DMA(DMA使用的物理地址空间);从16M到896M给了ZONE_NORMAL(正常物理地址空间),对于Linux操作系统来说,是内核可以直接访问的地址空间;从896M到1G这断空间叫做"Reserved"(预留的物理地址空间);从1G到4G的这段物理地址空间中,我们的内核是不能直接访问的,要想访问必须把其中的一段内容映射到Reserved来,在Reserved中保留出那一段内存的地址编码,我们内核才能上去访问,所以内核不直接访问大于1G的物理地址空间。所以在32位系统上,它访问内存当中的数据,中间是需要一个额外步骤的。

在64位系统上,ZONE_DAM给了低端的1G地址空间,这个时候DMA的寻址能力被大大加强了;ZONE_DAM32可以使用4G的空间;而大于1G以上给划分了ZONE_NORMAL,这段空间都可以被内核直接访问。所以在64位上,内核访问大于1G的内存地址,就不需要额外的步骤了,效率和性能上也大大增加,这也就是为什么要使用64位系统的原因。

在现在的PC架构上,AMD,INTER都支持一种机制,叫做PEA(物理地址扩展)。所谓PAE。指的是在32位系统的地址总线上,又扩展了4位,使得32位系统上的地址空间可以达到64G。当然在32为系统上,不管你的物理内存有多大,单个进程所使用的空间是无法扩展的。因为在32位的系统上,线性地址空间只有4个G,而单个进程能够识别的访问也只有3个G。

linux的虚拟内存子系统包含了以下几个功能模块:

slab allocator,zoned buddy allocator,MMU,kswapd,bdflush

slab allocator叫做slab分配器

buddy allocator又叫做buddy system,叫做伙伴系统,也是一种内存分配器

buddy system是工作在MMU之上的,而slab allocator又是工作在buddy system之上的。

设置为小于等于1G,在数据库服务器应该劲量避免使用交换内存

3.在应用服务器上,可以设置为RAM*0.5,当然这个是理论值

如果不的不使用交换内存,应该把交换内存放到最靠外的磁道分区上,因为最外边的磁盘的访问速度最快。所以如果有多块硬盘,可以把每块硬盘的最外层的磁道拿一小部分出来作为交换分区。交换分区可以定义优先级,因此把这些硬盘的交换内存的优先级设置为一样,可以实现负载均衡的效果。定义交换分区优先级的方法为编辑/etc/fstab:

/dev/sda1 swap swap pri=5 0 0

/dev/sdb1 swap swap pri=5 0 0

/dev/sdc1 swap swap pri=5 0 0

/dev/sdd1 swap swap pri=5 0 0

四.内存耗尽时候的相关调优参数

当Linux内存耗尽的时候,它会杀死那些占用内存最多的进程,以下三种情况会杀死进程:

1.所有的进程都是活动进程,这个时候想交换出去都没有空闲的进程

2.没有可用的page页在ZONE_NORMAL中

3.有其它新进程启动,申请内存空间的时候,要找一个空闲内存给做映射,但是这个时候找不到了

一旦内存耗尽的时候,操作系统就会启用oom-kill机制。

在/proc/PID/目录下有一个文件叫做oom_score,就是用来指定oom的评分的,就是坏蛋指数。

如果要手动启用oom-kill机制的话,只需要执行echo f>/proc/sysrq-trigger即可,它会自动杀掉我们指定的坏蛋指数评分最高的那个进程

可以通过echo n > /proc/PID/oom_adj来调整一个进程的坏蛋评分指数。最终的评分指数就是2的oom_adj的值的N次方。假如我们的一个进程的oom_adj的值是5,那么它的坏蛋评分指数就是2的5次方。

如果想禁止oom-kill功能的使用可以使用vm.panic_on_oom=1即可。

五.与容量有关的内存调优参数:

overcommit_memory,可用参数有3个,规定是否能够过量使用内存:

0:默认设置,内核执行启发式的过量使用处理

1:内核执行无内存的过量使用处理。使用这个值会增大内存超载的可能性

2:内存的使用量等于swap的大小+RAM*overcommit_ratio的值。如果希望减小内存的过度使用,这个值是最安全的

overcommit_ratio:将overcommit_memory指定为2时候,提供的物理RAM比例,默认为50

六.与通信相关的调优参数

常见在同一个主机中进行进程间通信的方式:

1.通过消息message;2.通过signal信号量进行通信;3.通过共享内存进行通信,跨主机常见的通信方式是rpc

以消息的方式实现进程通信的调优方案:

msgmax:以字节为单位规定消息队列中任意消息的最大允许大小。这个值一定不能超过该队列的大小(msgmnb),默认值为65536

msgmnb:以字节为单位规定单一消息队列的最大值(最大长度)。默认为65536字节

msgmni:规定消息队列识别符的最大数量(及队列的最大数量)。64位架构机器的默认值为1985;32位架构机器的默认值为1736

以共享内存方式实现进程通信的调优方案:

shmall:以字节为单位规定一次在该系统中可以使用的共享内存总量(单次申请的上限)

shmmax:以字节为单位规定每一个共享内存片段的最大大小

shmmni:规定系统范围内最大共享内存片段。在64和32位的系统上默认值都是4096

七.与容量相关的文件系统可调优参数:

file-max:列出内核分配的文件句柄的最大值

dirty_ratio:规定百分比值,当脏数据达到系统内存总数的这个百分比值后开始执行pdflush,默认为20

dirty_background_ratio:规定百分比值,当某一个进程自己所占用的脏页比例达到系统内存总数的这个百分比值后开始在后台执行pdflush,默认为10

dirty_expire_centisecs:pdlush每隔百分之一秒的时间开启起来刷新脏页,默认值为3000,所以每隔30秒起来开始刷新脏页

dirty_writeback_centisecs:每隔百分之一秒开始刷新单个脏页。默认值为500,所以一个脏页的存在时间达到了5秒,就开始刷新脏

八.linux内存常用的观察指标命令:

Memory activity

vmstat [interval] [count]

sar -r [interval] [count]

Rate of change in memory

sar -R [interval] [count]

frmpg/s:每秒释放或者分配的内存页,如果为正数,则为释放的内存页;如果为负数,则为分配的内存页

bufpg/s:每秒buffer中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

campg/s:每秒cache中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

Swap activity

sar -W [interval] [count]

ALL IO

sar -B [interval] [count]

pgpgin/s:每秒从磁盘写入到内核的块数量

pgpgout/s:每秒从内核写入到磁盘的块数量

fault/s:每秒钟出现的缺页异常的个数

majflt/s:每秒钟出现的大页异常的个数

pgfree/s:每秒回收回来的页面个数

㈢ Linux中如何使用断点

终端输入man
gdb可查命令
断点设置是
b
n
(n
为续设断点行号)
其他命令如下
gdb
file
first
///载入程序
break
n
///设置断点,n为行号
run
///运行
print
x
///打印变量x
next
///执行下一句
stop
///停止
quit
///退出
如果要使用ide调试,建议用emacs,再cc-mode,ecb,Yasnippet和cedet
希望对你有帮助

㈣ linux中使用了什么内存管理方法,为什么

“事实胜于雄辩”,我们用一个小例子(原形取自《User-Level Memory Management》)来展示上面所讲的各种内存区的差别与位置。

进程的地址空间对应的描述结构是“内存描述符结构”,它表示进程的全部地址空间,——包含了和进程地址空间有关的全部信息,其中当然包含进程的内存区域。

进程内存的分配与回收

创建进程fork()、程序载入execve()、映射文件mmap()、动态内存分配malloc()/brk()等进程相关操作都需要分配内存给进程。不过这时进程申请和获得的还不是实际内存,而是虚拟内存,准确的说是“内存区域”。进程对内存区域的分配最终都会归结到do_mmap()函数上来(brk调用被单独以系统调用实现,不用do_mmap()),

内核使用do_mmap()函数创建一个新的线性地址区间。但是说该函数创建了一个新VMA并不非常准确,因为如果创建的地址区间和一个已经存在的地址区间相邻,并且它们具有相同的访问权限的话,那么两个区间将合并为一个。如果不能合并,那么就确实需要创建一个新的VMA了。但无论哪种情况,do_mmap()函数都会将一个地址区间加入到进程的地址空间中--无论是扩展已存在的内存区域还是创建一个新的区域。

同样,释放一个内存区域应使用函数do_ummap(),它会销毁对应的内存区域。

如何由虚变实!

从上面已经看到进程所能直接操作的地址都为虚拟地址。当进程需要内存时,从内核获得的仅仅是虚拟的内存区域,而不是实际的物理地址,进程并没有获得物理内存(物理页面——页的概念请大家参考硬件基础一章),获得的仅仅是对一个新的线性地址区间的使用权。实际的物理内存只有当进程真的去访问新获取的虚拟地址时,才会由“请求页机制”产生“缺页”异常,从而进入分配实际页面的例程。

该异常是虚拟内存机制赖以存在的基本保证——它会告诉内核去真正为进程分配物理页,并建立对应的页表,这之后虚拟地址才实实在在地映射到了系统的物理内存上。(当然,如果页被换出到磁盘,也会产生缺页异常,不过这时不用再建立页表了)

这种请求页机制把页面的分配推迟到不能再推迟为止,并不急于把所有的事情都一次做完(这种思想有点像设计模式中的代理模式(proxy))。之所以能这么做是利用了内存访问的“局部性原理”,请求页带来的好处是节约了空闲内存,提高了系统的吞吐率。要想更清楚地了解请求页机制,可以看看《深入理解linux内核》一书。

这里我们需要说明在内存区域结构上的nopage操作。当访问的进程虚拟内存并未真正分配页面时,该操作便被调用来分配实际的物理页,并为该页建立页表项。在最后的例子中我们会演示如何使用该方法。

系统物理内存管理

虽然应用程序操作的对象是映射到物理内存之上的虚拟内存,但是处理器直接操作的却是物理内存。所以当应用程序访问一个虚拟地址时,首先必须将虚拟地址转化成物理地址,然后处理器才能解析地址访问请求。地址的转换工作需要通过查询页表才能完成,概括地讲,地址转换需要将虚拟地址分段,使每段虚地址都作为一个索引指向页表,而页表项则指向下一级别的页表或者指向最终的物理页面。

每个进程都有自己的页表。进程描述符的pgd域指向的就是进程的页全局目录。下面我们借用《linux设备驱动程序》中的一幅图大致看看进程地址空间到物理页之间的转换关系。

上面的过程说起来简单,做起来难呀。因为在虚拟地址映射到页之前必须先分配物理页——也就是说必须先从内核中获取空闲页,并建立页表。下面我们介绍一下内核管理物理内存的机制。

物理内存管理(页管理)

Linux内核管理物理内存是通过分页机制实现的,它将整个内存划分成无数个4k(在i386体系结构中)大小的页,从而分配和回收内存的基本单位便是内存页了。利用分页管理有助于灵活分配内存地址,因为分配时不必要求必须有大块的连续内存[3],系统可以东一页、西一页的凑出所需要的内存供进程使用。虽然如此,但是实际上系统使用内存时还是倾向于分配连续的内存块,因为分配连续内存时,页表不需要更改,因此能降低TLB的刷新率(频繁刷新会在很大程度上降低访问速度)。

鉴于上述需求,内核分配物理页面时为了尽量减少不连续情况,采用了“伙伴”关系来管理空闲页面。伙伴关系分配算法大家应该不陌生——几乎所有操作系统方面的书都会提到,我们不去详细说它了,如果不明白可以参看有关资料。这里只需要大家明白Linux中空闲页面的组织和管理利用了伙伴关系,因此空闲页面分配时也需要遵循伙伴关系,最小单位只能是2的幂倍页面大小。内核中分配空闲页面的基本函数是get_free_page/get_free_pages,它们或是分配单页或是分配指定的页面(2、4、8…512页)。

注意:get_free_page是在内核中分配内存,不同于malloc在用户空间中分配,malloc利用堆动态分配,实际上是调用brk()系统调用,该调用的作用是扩大或缩小进程堆空间(它会修改进程的brk域)。如果现有的内存区域不够容纳堆空间,则会以页面大小的倍数为单位,扩张或收缩对应的内存区域,但brk值并非以页面大小为倍数修改,而是按实际请求修改。因此Malloc在用户空间分配内存可以以字节为单位分配,但内核在内部仍然会是以页为单位分配的。

另外,需要提及的是,物理页在系统中由页结构structpage描述,系统中所有的页面都存储在数组mem_map[]中,可以通过该数组找到系统中的每一页(空闲或非空闲)。而其中的空闲页面则可由上述提到的以伙伴关系组织的空闲页链表(free_area[MAX_ORDER])来索引。

内核内存使用

Slab

所谓尺有所长,寸有所短。以页为最小单位分配内存对于内核管理系统中的物理内存来说的确比较方便,但内核自身最常使用的内存却往往是很小(远远小于一页)的内存块——比如存放文件描述符、进程描述符、虚拟内存区域描述符等行为所需的内存都不足一页。这些用来存放描述符的内存相比页面而言,就好比是面包屑与面包。一个整页中可以聚集多个这些小块内存;而且这些小块内存块也和面包屑一样频繁地生成/销毁。

为了满足内核对这种小内存块的需要,Linux系统采用了一种被称为slab分配器的技术。Slab分配器的实现相当复杂,但原理不难,其核心思想就是“存储池[4]”的运用。内存片段(小块内存)被看作对象,当被使用完后,并不直接释放而是被缓存到“存储池”里,留做下次使用,这无疑避免了频繁创建与销毁对象所带来的额外负载。

Slab技术不但避免了内存内部分片(下文将解释)带来的不便(引入Slab分配器的主要目的是为了减少对伙伴系统分配算法的调用次数——频繁分配和回收必然会导致内存碎片——难以找到大块连续的可用内存),而且可以很好地利用硬件缓存提高访问速度。

Slab并非是脱离伙伴关系而独立存在的一种内存分配方式,slab仍然是建立在页面基础之上,换句话说,Slab将页面(来自于伙伴关系管理的空闲页面链表)撕碎成众多小内存块以供分配,slab中的对象分配和销毁使用kmem_cache_alloc与kmem_cache_free。

Kmalloc

Slab分配器不仅仅只用来存放内核专用的结构体,它还被用来处理内核对小块内存的请求。当然鉴于Slab分配器的特点,一般来说内核程序中对小于一页的小块内存的请求才通过Slab分配器提供的接口Kmalloc来完成(虽然它可分配32到131072字节的内存)。从内核内存分配的角度来讲,kmalloc可被看成是get_free_page(s)的一个有效补充,内存分配粒度更灵活了。

有兴趣的话,可以到/proc/slabinfo中找到内核执行现场使用的各种slab信息统计,其中你会看到系统中所有slab的使用信息。从信息中可以看到系统中除了专用结构体使用的slab外,还存在大量为Kmalloc而准备的Slab(其中有些为dma准备的)。

内核非连续内存分配(Vmalloc)

伙伴关系也好、slab技术也好,从内存管理理论角度而言目的基本是一致的,它们都是为了防止“分片”,不过分片又分为外部分片和内部分片之说,所谓内部分片是说系统为了满足一小段内存区(连续)的需要,不得不分配了一大区域连续内存给它,从而造成了空间浪费;外部分片是指系统虽有足够的内存,但却是分散的碎片,无法满足对大块“连续内存”的需求。无论何种分片都是系统有效利用内存的障碍。slab分配器使得一个页面内包含的众多小块内存可独立被分配使用,避免了内部分片,节约了空闲内存。伙伴关系把内存块按大小分组管理,一定程度上减轻了外部分片的危害,因为页框分配不在盲目,而是按照大小依次有序进行,不过伙伴关系只是减轻了外部分片,但并未彻底消除。你自己比划一下多次分配页面后,空闲内存的剩余情况吧。

所以避免外部分片的最终思路还是落到了如何利用不连续的内存块组合成“看起来很大的内存块”——这里的情况很类似于用户空间分配虚拟内存,内存逻辑上连续,其实映射到并不一定连续的物理内存上。Linux内核借用了这个技术,允许内核程序在内核地址空间中分配虚拟地址,同样也利用页表(内核页表)将虚拟地址映射到分散的内存页上。以此完美地解决了内核内存使用中的外部分片问题。内核提供vmalloc函数分配内核虚拟内存,该函数不同于kmalloc,它可以分配较Kmalloc大得多的内存空间(可远大于128K,但必须是页大小的倍数),但相比Kmalloc来说,Vmalloc需要对内核虚拟地址进行重映射,必须更新内核页表,因此分配效率上要低一些(用空间换时间)

与用户进程相似,内核也有一个名为init_mm的mm_strcut结构来描述内核地址空间,其中页表项pdg=swapper_pg_dir包含了系统内核空间(3G-4G)的映射关系。因此vmalloc分配内核虚拟地址必须更新内核页表,而kmalloc或get_free_page由于分配的连续内存,所以不需要更新内核页表。

vmalloc分配的内核虚拟内存与kmalloc/get_free_page分配的内核虚拟内存位于不同的区间,不会重叠。因为内核虚拟空间被分区管理,各司其职。进程空间地址分布从0到3G(其实是到PAGE_OFFSET,在0x86中它等于0xC0000000),从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页面表mem_map等等)比如我使用的系统内存是64M(可以用free看到),那么(3G——3G+64M)这片内存就应该映射到物理内存,而vmalloc_start位置应在3G+64M附近(说"附近"因为是在物理内存映射区与vmalloc_start期间还会存在一个8M大小的gap来防止跃界),vmalloc_end的位置接近4G(说"接近"是因为最后位置系统会保留一片128k大小的区域用于专用页面映射,还有可能会有高端内存映射区,这些都是细节,这里我们不做纠缠)。

上图是内存分布的模糊轮廓

由get_free_page或Kmalloc函数所分配的连续内存都陷于物理映射区域,所以它们返回的内核虚拟地址和实际物理地址仅仅是相差一个偏移量(PAGE_OFFSET),你可以很方便的将其转化为物理内存地址,同时内核也提供了virt_to_phys()函数将内核虚拟空间中的物理映射区地址转化为物理地址。要知道,物理内存映射区中的地址与内核页表是有序对应的,系统中的每个物理页面都可以找到它对应的内核虚拟地址(在物理内存映射区中的)。

而vmalloc分配的地址则限于vmalloc_start与vmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体(可别和vm_area_struct搞混,那可是进程虚拟内存区域的结构),不同的内核虚拟地址被4k大小的空闲区间隔,以防止越界——见下图)。与进程虚拟地址的特性一样,这些虚拟地址与物理内存没有简单的位移关系,必须通过内核页表才可转换为物理地址或物理页。它们有可能尚未被映射,在发生缺页时才真正分配物理页面。

这里给出一个小程序帮助大家认清上面几种分配函数所对应的区域。

#include<linux/mole.h>

#include<linux/slab.h>

#include<linux/vmalloc.h>

unsignedchar*pagemem;

unsignedchar*kmallocmem;

unsignedchar*vmallocmem;

intinit_mole(void)

{

pagemem = get_free_page(0);

printk("<1>pagemem=%s",pagemem);

kmallocmem = kmalloc(100,0);

printk("<1>kmallocmem=%s",kmallocmem);

vmallocmem = vmalloc(1000000);

printk("<1>vmallocmem=%s",vmallocmem);

}

voidcleanup_mole(void)

{

free_page(pagemem);

kfree(kmallocmem);

vfree(vmallocmem);

}

实例

内存映射(mmap)是Linux操作系统的一个很大特色,它可以将系统内存映射到一个文件(设备)上,以便可以通过访问文件内容来达到访问内存的目的。这样做的最大好处是提高了内存访问速度,并且可以利用文件系统的接口编程(设备在Linux中作为特殊文件处理)访问内存,降低了开发难度。许多设备驱动程序便是利用内存映射功能将用户空间的一段地址关联到设备内存上,无论何时,只要内存在分配的地址范围内进行读写,实际上就是对设备内存的访问。同时对设备文件的访问也等同于对内存区域的访问,也就是说,通过文件操作接口可以访问内存。Linux中的X服务器就是一个利用内存映射达到直接高速访问视频卡内存的例子。

熟悉文件操作的朋友一定会知道file_operations结构中有mmap方法,在用户执行mmap系统调用时,便会调用该方法来通过文件访问内存——不过在调用文件系统mmap方法前,内核还需要处理分配内存区域(vma_struct)、建立页表等工作。对于具体映射细节不作介绍了,需要强调的是,建立页表可以采用remap_page_range方法一次建立起所有映射区的页表,或利用vma_struct的nopage方法在缺页时现场一页一页的建立页表。第一种方法相比第二种方法简单方便、速度快,但是灵活性不高。一次调用所有页表便定型了,不适用于那些需要现场建立页表的场合——比如映射区需要扩展或下面我们例子中的情况。

我们这里的实例希望利用内存映射,将系统内核中的一部分虚拟内存映射到用户空间,以供应用程序读取——你可利用它进行内核空间到用户空间的大规模信息传输。因此我们将试图写一个虚拟字符设备驱动程序,通过它将系统内核空间映射到用户空间——将内核虚拟内存映射到用户虚拟地址。从上一节已经看到Linux内核空间中包含两种虚拟地址:一种是物理和逻辑都连续的物理内存映射虚拟地址;另一种是逻辑连续但非物理连续的vmalloc分配的内存虚拟地址。我们的例子程序将演示把vmalloc分配的内核虚拟地址映射到用户地址空间的全过程。

程序里主要应解决两个问题:

第一是如何将vmalloc分配的内核虚拟内存正确地转化成物理地址?

因为内存映射先要获得被映射的物理地址,然后才能将其映射到要求的用户虚拟地址上。我们已经看到内核物理内存映射区域中的地址可以被内核函数virt_to_phys转换成实际的物理内存地址,但对于vmalloc分配的内核虚拟地址无法直接转化成物理地址,所以我们必须对这部分虚拟内存格外“照顾”——先将其转化成内核物理内存映射区域中的地址,然后在用virt_to_phys变为物理地址。

转化工作需要进行如下步骤:

  • 找到vmalloc虚拟内存对应的页表,并寻找到对应的页表项。

  • 获取页表项对应的页面指针

  • 通过页面得到对应的内核物理内存映射区域地址。

  • 如下图所示:

    第二是当访问vmalloc分配区时,如果发现虚拟内存尚未被映射到物理页,则需要处理“缺页异常”。因此需要我们实现内存区域中的nopaga操作,以能返回被映射的物理页面指针,在我们的实例中就是返回上面过程中的内核物理内存映射区域中的地址。由于vmalloc分配的虚拟地址与物理地址的对应关系并非分配时就可确定,必须在缺页现场建立页表,因此这里不能使用remap_page_range方法,只能用vma的nopage方法一页一页的建立。

    程序组成

    map_driver.c,它是以模块形式加载的虚拟字符驱动程序。该驱动负责将一定长的内核虚拟地址(vmalloc分配的)映射到设备文件上。其中主要的函数有——vaddress_to_kaddress()负责对vmalloc分配的地址进行页表解析,以找到对应的内核物理映射地址(kmalloc分配的地址);map_nopage()负责在进程访问一个当前并不存在的VMA页时,寻找该地址对应的物理页,并返回该页的指针。

    test.c它利用上述驱动模块对应的设备文件在用户空间读取读取内核内存。结果可以看到内核虚拟地址的内容(ok!),被显示在了屏幕上。

    执行步骤

    编译map_driver.c为map_driver.o模块,具体参数见Makefile

    加载模块:insmodmap_driver.o

    生成对应的设备文件

    1在/proc/devices下找到map_driver对应的设备命和设备号:grepmapdrv/proc/devices

    2建立设备文件mknodmapfilec 254 0(在我的系统里设备号为254)

    利用maptest读取mapfile文件,将取自内核的信息打印到屏幕上。

    ㈤ Linux的内存管理机制是什么样的

    物理内存和虚拟内存
    我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。

    物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。
    作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。
    linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。
    要深入了解linux内存运行机制,需要知道下面提到的几个方面:
    首先,Linux系统会不时的进行页面交换操作,以保持尽可能多的空闲物理内存,即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以避免等待交换所需的时间。
    其次,linux进行页面交换是有
    条件的,不是所有页面在不用时都交换到虚拟内存,linux内核根据”最近最经常使用“算法,仅仅将一些不经常使用的页面文件交换到虚拟内存,有时我们会
    看到这么一个现象:linux物理内存还有很多,但是交换空间也使用了很多。其实,这并不奇怪,例如,一个占用很大内存的进程运行时,需要耗费很多内存资
    源,此时就会有一些不常用页面文件被交换到虚拟内存中,但后来这个占用很多内存资源的进程结束并释放了很多内存时,刚才被交换出去的页面文件并不会自动的
    交换进物理内存,除非有这个必要,那么此刻系统物理内存就会空闲很多,同时交换空间也在被使用,就出现了刚才所说的现象了。关于这点,不用担心什么,只要
    知道是怎么一回事就可以了。
    最后,交换空间的页面在使用时会首
    先被交换到物理内存,如果此时没有足够的物理内存来容纳这些页面,它们又会被马上交换出去,如此以来,虚拟内存中可能没有足够空间来存储这些交换页面,最
    终会导致linux出现假死机、服务异常等问题,linux虽然可以在一段时间内自行恢复,但是恢复后的系统已经基本不可用了。
    因此,合理规划和设计linux内存的使用,是非常重要的.
    内存的监控
    作为一名linux系统管理员,监控内存的使用状态是非常重要的,通过监控有助于了解内存的使用状态,比如内存占用是否正常,内存是否紧缺等等,监控内存最常使用的命令有free、top等,下面是某个系统free的输出:
    [haixigov@WEBServer ~]$ free
    total used free shared buffers cached
    Mem: 16402432 16360492 41940 0 465404 12714880
    -/+ buffers/cache: 3180208 13222224
    Swap: 8193108 264 8192844

    我们解释下输出结果中每个选项的含义:
    首先是第一行:
     total:物理内存的总大小。
     used:已经使用的物理内存多小。
     free:空闲的物理内存值。
     shared:多个进程共享的内存值。
     buffers/cached:磁盘缓存的大小。
    第二行Mem:代表物理内存使用情况。
    第三行(-/+ buffers/cached):代表磁盘缓存使用状态。
    第四行:Swap表示交换空间内存使用状态。
    free命令输出的内存状态,可以通过两个角度来查看:一个是从内核的角度来看,一个是从应用层的角度来看的。

    从内核的角度来查看内存的状态
    就是内核目前可以直接分配到,不需要额外的操作,即为上面free命令输出中第二行Mem项的值,可以看出,此系统物理内存有16G,空闲的内存只有41940K,也就是40M多一点,我们来做一个这样的计算:
    16402432-16360492=41940

    其实就是总的物理内存减去已经使用的物理内存得到的就是空闲的物理内存大小,注意这里的可用内存值41940并不包含处于buffers和cached状态的内存大小。

    如果你认为这个系统空闲内存太小,那你就错了,实际上,内核完全控制着内存的使用情况,linux会在需要内存的时候,或在系统运行逐步推进时,将buffers和cached状态的内存变为free状态的内存,以供系统使用。

    从应用层的角度来看系统内存的使用状态
    也就是linux上运行的应用程序可以使用的内存大小,即free命令第三行“(-/+ buffers/cached)”的输出,可以看到,此系统已经使用的内存才3180208K,而空闲的内存达到13222224K,继续做这样一个计算:
    41940+(465404+12714880)=13222224

    过这个等式可知,应用程序可用的物理内存值是Mem项的free值加上buffers和cached值之和,也就是说,这个free值是包括
    buffers和cached项大小的,对于应用程序来说,buffers/cached占有的内存是可用的,因为buffers/cached是为了提
    高文件读取的性能,当应用程序需要用到内存的时候,buffers/cached会很快地被回收,以供应用程序使用。

    buffers与cached的异同

    Linux
    操作系统中,当应用程序需要读取文件中的数据时,操作系统先分配一些内存,将数据从磁盘读入到这些内存中,然后再将数据分发给应用程序;当需要往文件中写
    数据时,操作系统先分配内存接收用户数据,然后再将数据从内存写到磁盘上。然而,如果有大量数据需要从磁盘读取到内存或者由内存写入磁盘时,系统的读写性
    能就变得非常低下,因为无论是从磁盘读数据,还是写数据到磁盘,都是一个很消耗时间和资源的过程,在这种情况下,linux引入了buffers和
    cached机制。

    buffers与cached都是内存操作,用来保存系统曾经打开过的文件以及文件属性信息,这样当操作系统需要读取
    某些文件时,会首先在buffers与cached内存区查找,如果找到,直接读出传送给应用程序,如果没有找到需要数据,才从磁盘读取,这就是操作系统
    的缓存机制,通过缓存,大大提高了操作系统的性能。但buffers与cached缓冲的内容却是不同的。

    buffers是用来缓冲块设
    备做的,它只记录文件系统的元数据(metadata)以及 tracking in-flight
    pages,而cached是用来给文件做缓冲。更通俗一点说:buffers主要用来存放目录里面有什么内容,文件的属性以及权限等等。而cached
    直接用来记忆我们打开过的文件和程序。

    为了验证我们的结论是否正确,可以通过vi打开一个非常大的文件,看看cached的变化,然后再次vi这个文件,感觉一下两次打开的速度有何异同,是不是第二次打开的速度明显快于第一次呢?
    接着执行下面的命令:
    find /* -name *.conf
    看看buffers的值是否变化,然后重复执行find命令,看看两次显示速度有何不同。
    Linux操作系统的内存运行原理,很大程度上是根据服务器的需求来设计的,例如系统的缓冲机制会把经常使用到的文件和数据缓存在cached
    中,linux总是在力求缓存更多的数据和信息,这样再次需要这些数据时可以直接从内存中取,而不需要有一个漫长的磁盘操作,这种设计思路提高了系统的整
    体性能。
    交换空间swap的使用
    虽然现在的内存已经变得非常廉价,但是swap仍然有很大的使用价值,合理的规划和使用swap分区,对系统稳定运行至关重要。Linux下可以使用文件系统中的一个常规文件或者一个独立分区作为交换空间使用。同时linux允许使用多个交换分区或者交换文件。

    创建swap交换空间
    创建交换空间所需的交换文件是一个普通的文件,但是,创建交换文件与创建普通文件不同,必须通过dd命令来完成,同时这个文件必须位于本地硬盘上,不能在网络文件系统(NFS)上创建swap交换文件。例如:
    [root@localhost ~]# dd if=/dev/zero of=/data/swapfile bs=1024 count=65536
    65536+0 records in
    65536+0 records out
    这样就创建一个有连续空间的交换文件,大小为60M左右,关于dd命令做简单的讲述:
    if=输入文件,或者设备名称。
    of=输出文件或者设备名称。
    ibs=bytes 表示一次读入bytes 个字节(即一个块大小为 bytes 个字节)。
    obs=bytes 表示一次写bytes 个字节(即一个块大小为 bytes 个字节)。
    bs=bytes,同时设置读写块的大小,以bytes为单位,此参数可代替 ibs 和 obs。
    count=blocks 仅拷贝blocks个块。
    skip=blocks 表示从输入文件开头跳过 blocks 个块后再开始复制。
    seek=blocks表示从输出文件开头跳过 blocks 个块后再开始复制。(通常只有当输出文件是磁盘或磁带时才有效)
    这里的输入设备/dev/zero代表一个输出永远为0的设备文件,使用它作输入可以得到全为空的文件。
    激活和使用swap
    首先通过mkswap命令指定作为交换空间的设备或者文件:
    [root@localhost ~]#mkswap /data/swapfile
    Setting up swapspace version 1, size = 67104 kB
    [root@localhost backup]# free
    total used free shared buffers cached
    Mem: 2066632 1998188 68444 0 26160 1588044
    -/+ buffers/cache: 383984 1682648
    Swap: 4088500 101036 3987464
    从上面输出可知,我们指定了一个67104 kB的交换空间,而此时新建的交换空间还未被使用,下面简单介绍下mkswap命令,mkswap的一般使用格式为:
    mkswap [参数] [设备名称或文件][交换区大小]
    参数:
    -c:建立交换区前,先检查是否有损坏的区块。
    -v0:建立旧式交换区,此为预设值。
    -v1:建立新式交换区。
    交换区大小:指定交换区的大小,单位为1024字节。
    设置交换分区后,接着通过swapon命令激活swap:
    [root@localhost ~]#/usr/sbin/swapon /data/swapfile
    [root@localhost backup]# free
    total used free shared buffers cached
    Mem: 2066632 1997668 68964 0 27404 1588880
    -/+ buffers/cache: 381384 1685248
    Swap: 4154028 100976 4053052


    过free命令可以看出,swap大小已经由4088500k变为4154028k,相差的值是60M左右,刚好等于我们增加的一个交换文件大小,这说明
    新增的交换分区已经可以使用了,但是如果linux重启,那么新增的swap空间将变得不可用,因此需要在/etc/fstab中添加自动加载设置:
    /data/swapfile none swap sw 0 0
    如此以来,linux在重启后就可以实现自动加载swap分区了。其实linux在启动过程中会执行“swapon -a”命令,此命令会加载列在/etc/fstab中的所有交换空间。

    移除swap
    通过swapoff即可移除一个交换空间
    [root@localhost ~]#/usr/sbin/swapoff /data/swapfile
    其实也可以通过“swapoff -a”移除在/etc/fstab中定义的所有交换空间,这里的“swapoff -a”与上面提到的“swapon -a”对应。执行“swapoff -a”后,free命令输出如下:
    [root@localhost backup]# free
    total used free shared buffers cached
    Mem: 2066632 2048724 17908 0 30352 1642748
    -/+ buffers/cache: 375624 1691008
    Swap: 0 0 0

    ㈥ Linux下实现断点续传的原理介绍

    Linux下实现断点续传的原理介绍

    断点续传的原理

    其实断点续传的原理很简单,就是在 Http 的请求上和一般的下载有所不同而已。

    打个比方,浏览器请求服务器上的一个文时,所发出的请求如下:

    假设服务器域名为 ,文件名为 down.zip。

    GET /down.zip HTTP/1.1

    Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-

    excel, application/msword, application/vnd.ms-powerpoint, */*

    Accept-Language: zh-cn

    Accept-Encoding: gzip, deflate

    User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

    Connection: Keep-Alive

    服务器收到请求后,按要求寻找请求的文件,提取文件的信息,然后返回给浏览器,返回信息如下:

    200

    Content-Length=106786028

    Accept-Ranges=bytes

    Date=Mon, 30 Apr 2001 12:56:11 GMT

    ETag=W/“02ca57e173c11:95b”

    Content-Type=application/octet-stream

    Server=Microsoft-IIS/5.0

    Last-Modified=Mon, 30 Apr 2001 12:56:11 GMT

    所谓断点续传,也就是要从文件已经下载的地方开始继续下载。所以在客户端浏览器传给 Web 服务器的时候要多加一条信息 -- 从哪里开始。

    下面是用自己编的一个“浏览器”来传递请求信息给 Web 服务器,要求从 2000070 字节开始。

    GET /down.zip HTTP/1.0

    User-Agent: NetFox

    RANGE: bytes=2000070-

    Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

    仔细看一下就会发现多了一行 RANGE: bytes=2000070-

    这一行的意思就是告诉服务器 down.zip 这个文件从 2000070 字节开始传,前面的字节不用传了。

    服务器收到这个请求以后,返回的信息如下:

    206

    Content-Length=106786028

    Content-Range=bytes 2000070-106786027/106786028

    Date=Mon, 30 Apr 2001 12:55:20 GMT

    ETag=W/“02ca57e173c11:95b”

    Content-Type=application/octet-stream

    Server=Microsoft-IIS/5.0

    Last-Modified=Mon, 30 Apr 2001 12:55:20 GMT

    和前面服务器返回的信息比较一下,就会发现增加了一行:

    Content-Range=bytes 2000070-106786027/106786028

    返回的`代码也改为 206 了,而不再是 200 了。

    知道了以上原理,就可以进行断点续传的编程了。

    Java 实现断点续传的关键几点

    (1) 用什么方法实现提交 RANGE: bytes=2000070-。

    当然用最原始的 Socket 是肯定能完成的,不过那样太费事了,其实 Java 的 net 包中提供了这种功能。代码如下:

    URL url = new URL(“/down.zip”);

    HttpURLConnection httpConnection = (HttpURLConnection)url.openConnection();

    // 设置 User-Agent

    httpConnection.setRequestProperty(“User-Agent”,“NetFox”);

    // 设置断点续传的开始位置

    http Connection.setRequestProperty(“RANGE”,“bytes=2000070”);

    // 获得输入流

    InputStream input = httpConnection.getInputStream();

    从输入流中取出的字节流就是 down.zip 文件从 2000070 开始的字节流。 大家看,其实断点续传用 Java 实现起来还是很简单的吧。 接下来要做的事就是怎么保存获得的流到文件中去了。

    保存文件采用的方法。

    我采用的是 IO 包中的 RandAccessFile 类。

    操作相当简单,假设从 2000070 处开始保存文件,代码如下:

    RandomAccess oSavedFile = new RandomAccessFile(“down.zip”,“rw”);

    long nPos = 2000070;

    // 定位文件指针到 nPos 位置

    oSavedFile.seek(nPos);

    byte[] b = new byte[1024];

    int nRead;

    // 从输入流中读入字节流,然后写到文件中

    while((nRead=input.read(b,0,1024)) 》 0)

    {

    oSavedFile.write(b,0,nRead);

    }

    以上就是断点续传的原理,知道这些原理,相信大家都能够进行编程了吧,这个技术在现在的电脑技术上也算不得什么,打家应该都注意到我们下载时都是断点续传吧

    ㈦ 内存访问断点和 硬件访问断点有什么区别

    内存断点是通过把相应位置指令替换成int3来实现的。硬件断点是通过设置CPU相应硬件寄存器来阻止程序继续运行的。因为修改程序代码你想怎么改就怎么改。所以内存断点你可以设置很多个。而硬件寄存器数量有限,所以只能设置几个(目前大多数是4个)因为修改的是程序的代码,所以内存断点很容易被程序自身检测到。而硬件断点则很难被发现。

    ㈧ linux中物理内存和虚拟内存

    vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存、进程、CPU活动进行监控。他是对系统的整体情况进行统计,不足之处是无法对某个进程进行深入分析。vmstat 工具提供了一种低开销的系统性能观察方式。因为 vmstat 本身就是低开销工具,在非常高负荷的服务器上,你需要查看并监控系统的健康情况,在控制窗口还是能够使用vmstat 输出结果。在学习vmstat命令前,我们先了解一下Linux系统中关于物理内存和虚拟内存相关信息。

    物理内存和虚拟内存区别:

    我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。

    物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。

    作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。

    linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。

    要深入了解linux内存运行机制,需要知道下面提到的几个方面:

    首先,Linux系统会不时的进行页面交换操作,以保持尽可能多的空闲物理内存,即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以避免等待交换所需的时间。

    其次,linux进行页面交换是有条件的,不是所有页面在不用时都交换到虚拟内存,linux内核根据”最近最经常使用“算法,仅仅将一些不经常使用的页面文件交换到虚拟内存,有时我们会看到这么一个现象:linux物理内存还有很多,但是交换空间也使用了很多。其实,这并不奇怪,例如,一个占用很大内存的进程运行时,需要耗费很多内存资源,此时就会有一些不常用页面文件被交换到虚拟内存中,但后来这个占用很多内存资源的进程结束并释放了很多内存时,刚才被交换出去的页面文件并不会自动的交换进物理内存,除非有这个必要,那么此刻系统物理内存就会空闲很多,同时交换空间也在被使用,就出现了刚才所说的现象了。关于这点,不用担心什么,只要知道是怎么一回事就可以了。

    最后,交换空间的页面在使用时会首先被交换到物理内存,如果此时没有足够的物理内存来容纳这些页面,它们又会被马上交换出去,如此以来,虚拟内存中可能没有足够空间来存储这些交换页面,最终会导致linux出现假死机、服务异常等问题,linux虽然可以在一段时间内自行恢复,但是恢复后的系统已经基本不可用了。

    因此,合理规划和设计linux内存的使用,是非常重要的。

    虚拟内存原理:

    在系统中运行的每个进程都需要使用到内存,但不是每个进程都需要每时每刻使用系统分配的内存空间。当系统运行所需内存超过实际的物理内存,内核会释放某些进程所占用但未使用的部分或所有物理内存,将这部分资料存储在磁盘上直到进程下一次调用,并将释放出的内存提供给有需要的进程使用。

    在Linux内存管理中,主要是通过“调页Paging”和“交换Swapping”来完成上述的内存调度。调页算法是将内存中最近不常使用的页面换到磁盘上,把活动页面保留在内存中供进程使用。交换技术是将整个进程,而不是部分页面,全部交换到磁盘上。

    分页(Page)写入磁盘的过程被称作Page-Out,分页(Page)从磁盘重新回到内存的过程被称作Page-In。当内核需要一个分页时,但发现此分页不在物理内存中(因为已经被Page-Out了),此时就发生了分页错误(Page Fault)。

    当系统内核发现可运行内存变少时,就会通过Page-Out来释放一部分物理内存。经管Page-Out不是经常发生,但是如果Page-out频繁不断的发生,直到当内核管理分页的时间超过运行程式的时间时,系统效能会急剧下降。这时的系统已经运行非常慢或进入暂停状态,这种状态亦被称作thrashing(颠簸)。

    总结:物理内存就是硬件提供的真实的内存,比如我们电脑内存不够了,就会加一个内存条
    虚拟内存就是从磁盘上虚拟出来的一块逻辑内存,用做虚拟内存的磁盘空间被称为交换空间(Swap Space
    经常使用的文件会优先放在物理内存,不经常使用的文件会放到虚拟内存里面。

    ㈨ Linux下怎么实现断点续传

    linux下有个经典的下载工具wget。它就有断点续传的功能
    方法是wget -c空格,后面跟上具体的下载地址。但是,有个前提就是服务器要能支持断点续传才行。至于 重试,使用-t。重试50次,就写-t空格50,如果是-t空格0,则意味着不停的重试,直到成功连接或断网关机。-T代表超时等待时间。-T空格90。表示等90秒连接不上就算连接超时了。

    ㈩ 如何理解Linux中的OOM机制

    Linux 内核有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽而内核会把该进程杀掉。

    阅读全文

    与linux内存断点原理相关的资料

    热点内容
    为什么有护照大数据还要排查 浏览:241
    为啥qq群文件下载不了 浏览:1
    note3开机密码设置 浏览:64
    excel表文件怎么按照日期排序 浏览:745
    源网站招聘 浏览:729
    java大数据技术有哪些 浏览:718
    可信编程是什么 浏览:824
    大数据产生三个主要推手 浏览:385
    js数字正则表达式 浏览:865
    物流做数据的是什么岗位 浏览:80
    jsp传到mysql乱码 浏览:584
    有什么免费的钢琴陪练app 浏览:720
    品牌知名度的数据信息从哪里找 浏览:206
    网络技术简介 浏览:96
    数控铣床如何使用软件编程 浏览:875
    远程桌面无法传输文件 浏览:953
    ie8怎样升级到ie11 浏览:397
    榆林市榆阳区有哪些编程课 浏览:246
    轻松备份专业版教程 浏览:658
    移动网络2g怎么改成4g 浏览:634

    友情链接