导航:首页 > 编程系统 > linux多线程线程池

linux多线程线程池

发布时间:2021-03-04 05:25:35

linux下多线程的如何执行

主线程结束,则进程结束,属于该进程的所有线程都会结束,可以在主线程中join,也可以在主线程中加死循环。

❷ Linux c如何创建线程池

linux c 并没有自带的线程池,纯C的线程池很少

1:使用glib的线程池,gthreadpool,这个是linux C 下面的一个线版程池实现,可以用于权生产环境。
2:自己设计线程池,但是设计一个工业强度的线程池是一件非常复杂的事情,尤其用C来实现。一般思路就是建立一个线程池管理函数,一个线程函数并创建一组线程,一个全局的线程状态数组,线程管理函数通过全局线程状态数组来分派任务,线程函数更改自己的线程状态来上报自己的运行情况,实现起来还是相当复杂的。
建议不要重复造轮子,直接使用现有的线程池实现,glib是很好的选择。

❸ linux线程池能最多有多少个线程

默认情况下linux环境下一个进程最多能有多少个线程:
主线程+自己的线程382 = 383

❹ Linux多线程实现线程间不停的切换

你这个问题很有意思。第一次执行的时候,可以看出,能执行0~6共7次;第二次的时候,从6开始,到5,只有2次了,并且以后都是只有2次。
基于你的描述,我想可以用互斥信号量来做。
1、初始化2个信号量pmutex1(有资源), pmutex2(无资源),初始化gnum=0
2、启动两个线程
2.1 线程1
lock_the_mutex_signal(pmutex1); // 上锁自身线程,首次可执行
while (gnum < 5) {
do_sth(); // 做你的业务逻辑

gnum++; // 增加执行次数

} // end while()
unlock_the_mutex_signal(pmutex2); // 解锁另一线程
2.2 线程2

lock_the_mutex_signal(pmutex2); // 上锁自己,首次执行将阻塞,并交出CPU
while (gnum > 5) {
do_sth(); // ...

gnum--; // ...

} // end while()
unlock_the_mutex_signal(pmutex1); // release the lock
PS:如果你不是非常严格地(从系统级杜绝不该被执行的线程被调用)要求线程切换的话,这个逻辑应该可以工作。自己没有试,希望你明白我的思想,如有错误,自己再修改一下。

❺ linux高并发的实现,线程池的实现思想,怎样处理高并发

linux高并发的实现,线程池的实现思想,怎样处理高并发
就比如说,用迅雷看电影专。一边属下载,一边播放。这个时候下载进程和播放进程,他们两个就有同步的机制,例如:只能播放视频文件中已经下载完成的部分,没有下载的不能播放。并且,如果已经下载的全部播放完了,那播放器就要等待,等到有内容的时候再继续播放

❻ Linux下多线程和多进程程序的优缺点,各个适合什么样的业务场景

IBM有个家伙做了个测试,发现切换线程context的时候,windows比linux快一倍多。进出最快的锁(windows2k的 critical section和linux的pthread_mutex),windows比linux的要快五倍左右。当然这并不是说linux不好,而且在经过实际编程之后,综合来看我觉得linux更适合做high performance server,不过在多线程这个具体的领域内,linux还是稍逊windows一点。这应该是情有可原的,毕竟unix家族都是从多进程过来的,而 windows从头就是多线程的。
如果是UNIX/linux环境,采用多线程没必要。
多线程比多进程性能高?误导!
应该说,多线程比多进程成本低,但性能更低。
在UNIX环境,多进程调度开销比多线程调度开销,没有显著区别,就是说,UNIX进程调度效率是很高的。内存消耗方面,二者只差全局数据区,现在内存都很便宜,服务器内存动辄若干G,根本不是问题。
多进程是立体交通系统,虽然造价高,上坡下坡多耗点油,但是不堵车。
多线程是平面交通系统,造价低,但红绿灯太多,老堵车。
我们现在都开跑车,油(主频)有的是,不怕上坡下坡,就怕堵车。
高性能交易服务器中间件,如TUXEDO,都是主张多进程的。实际测试表明,TUXEDO性能和并发效率是非常高的。TUXEDO是贝尔实验室的,与UNIX同宗,应该是对UNIX理解最为深刻的,他们的意见应该具有很大的参考意义。

多线程的优点:
无需跨进程边界;
程序逻辑和控制方式简单;
所有线程可以直接共享内存和变量等;
线程方式消耗的总资源比进程方式好;
多线程缺点:
每个线程与主程序共用地址空间,受限于2GB地址空间;
线程之间的同步和加锁控制比较麻烦;
一个线程的崩溃可能影响到整个程序的稳定性;
到达一定的线程数程度后,即使再增加CPU也无法提高性能,例如Windows Server 2003,大约是1500个左右的线程数就快到极限了(线程堆栈设定为1M),如果设定线程堆栈为2M,还达不到1500个线程总数;
线程能够提高的总性能有限,而且线程多了之后,线程本身的调度也是一个麻烦事儿,需要消耗较多的CPU

多进程优点:
每个进程互相独立,不影响主程序的稳定性,子进程崩溃没关系;
通过增加CPU,就可以容易扩充性能;
可以尽量减少线程加锁/解锁的影响,极大提高性能,就算是线程运行的模块算法效率低也没关系;
每个子进程都有2GB地址空间和相关资源,总体能够达到的性能上限非常大
多线程缺点:
逻辑控制复杂,需要和主程序交互;
需要跨进程边界,如果有大数据量传送,就不太好,适合小数据量传送、密集运算
多进程调度开销比较大;
最好是多进程和多线程结合,即根据实际的需要,每个CPU开启一个子进程,这个子进程开启多线程可以为若干同类型的数据进行处理。当然你也可以利用多线程+多CPU+轮询方式来解决问题……
方法和手段是多样的,关键是自己看起来实现方便有能够满足要求,代价也合适。

❼ linux 多线程 怎样优化 提高并发性

先说线程 就是程序运行的最小单位 或者说是cpu调度的最小单位

多线程 就是 单个程序中使用多个线程并发操作 实现 资源有效利用 并提高效率的方法
怎么实现的 就跟他扯函数吧

❽ C++在linux下怎么多线程

#ifndefTHREAD_H_
#defineTHREAD_H_
#include<unistd.h>
#include<pthread.h>
classRunnable
{
public:
//运行实体
virtualvoidrun()=0;
};
//线程类
classThread:publicRunnable
{
private:
//线程初始化号
staticintthread_init_number;
//当前线程初始化序号
intcurrent_thread_init_number;
//线程体
Runnable*target;
//当前线程的线程ID
pthread_ttid;
//线程的状态
intthread_status;
//线程属性
pthread_attr_tattr;
//线程优先级
sched_paramparam;
//获取执行方法的指针
staticvoid*run0(void*pVoid);
//内部执行方法
void*run1();
//获取线程序号
staticintget_next_thread_num();
public:
//线程的状态-新建
staticconstintTHREAD_STATUS_NEW=0;
//线程的状态-正在运行
staticconstintTHREAD_STATUS_RUNNING=1;
//线程的状态-运行结束
staticconstintTHREAD_STATUS_EXIT=-1;
//构造函数
Thread();
//构造函数
Thread(Runnable*target);
//析构
~Thread();
//线程的运行体
voidrun();
//开始执行线程
boolstart();
//获取线程状态
intget_state();
//等待线程直至退出
voidjoin();
//等待线程退出或者超时
voidjoin(unsignedlongmillis_time);
//比较两个线程时候相同,通过current_thread_init_number判断
booloperator==(constThread*other_pthread);
//获取this线程ID
pthread_tget_thread_id();
//获取当前线程ID
staticpthread_tget_current_thread_id();
//当前线程是否和某个线程相等,通过tid判断
staticboolis_equals(Thread*iTarget);
//设置线程的类型:绑定/非绑定
voidset_thread_scope(boolisSystem);
//获取线程的类型:绑定/非绑定
boolget_thread_scope();
//设置线程的优先级,1-99,其中99为实时,意外的为普通
voidset_thread_priority(intpriority);
//获取线程的优先级
intget_thread_priority();
};
intThread::thread_init_number=1;
inlineintThread::get_next_thread_num()
{
returnthread_init_number++;
}
void*Thread::run0(void*pVoid)
{
Thread*p=(Thread*)pVoid;
p->run1();
returnp;
}
void*Thread::run1()
{
thread_status=THREAD_STATUS_RUNNING;
tid=pthread_self();
run();
thread_status=THREAD_STATUS_EXIT;
tid=0;
pthread_exit(NULL);
}
voidThread::run()
{
if(target!=NULL)
{
(*target).run();
}
}
Thread::Thread()
{
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::Thread(Runnable*iTarget)
{
target=iTarget;
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::~Thread()
{
pthread_attr_destroy(&attr);
}
boolThread::start()
{
returnpthread_create(&tid,&attr,run0,this);
}
inlinepthread_tThread::get_current_thread_id()
{
returnpthread_self();
}
inlinepthread_tThread::get_thread_id()
{
returntid;
}
inlineintThread::get_state()
{
returnthread_status;
}
voidThread::join()
{
if(tid>0)
{
pthread_join(tid,NULL);
}
}
voidThread::join(unsignedlongmillis_time)
{
if(tid==0)
{
return;
}
if(millis_time==0)
{
join();
}
else
{
unsignedlongk=0;
while(thread_status!=THREAD_STATUS_EXIT&&k<=millis_time)
{
usleep(100);
k++;
}
}
}
boolThread::operator==(constThread*other_pthread)
{
if(other_pthread==NULL)
{
returnfalse;
}if(current_thread_init_number==(*other_pthread).current_thread_init_number)
{
returntrue;
}
returnfalse;
}
boolThread::is_equals(Thread*iTarget)
{
if(iTarget==NULL)
{
returnfalse;
}
returnpthread_self()==iTarget->tid;
}
voidThread::set_thread_scope(boolisSystem)
{
if(isSystem)
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_SYSTEM);
}
else
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_PROCESS);
}
}
voidThread::set_thread_priority(intpriority)
{
pthread_attr_getschedparam(&attr,&param);
param.__sched_priority=priority;
pthread_attr_setschedparam(&attr,&param);
}
intThread::get_thread_priority(){
pthread_attr_getschedparam(&attr,&param);
returnparam.__sched_priority;
}
#endif/*THREAD_H_*/

❾ Linux 线程池 的问题

表达式为false的时候,assert才会退出程序
编线程池,我觉得有几点需要考虑:
- 资源的分配与回收
- 性能与资源占用的平衡
- 数据的同步,共享的数据必须加锁

❿ 线程池的概念及Linux 怎么设计一个简单的线程池

什么是线程池来?
简单自点说,线程池就是有一堆已经创建好了的线程,初始它们都处于空闲等待状态,当有新的任务需要处理的时候,就从这个池子里面取一个空闲等 待的线程来处理该任务,当处理完成了就再次把该线程放回池中,以供后面的任务使用。当池子里的线程全都处理忙碌状态时,线程池中没有可用的空闲等待线程, 此时,根据需要选择创建一个新的线程并置入池中,或者通知任务线程池忙,稍后再试。
为什么要用线程池?

为什么要用线程池?
我们说,线程的创建和销毁比之进程的创建和销毁是轻量级的,但是当我们的任务需要大量进行大量线程的创建和销毁操作时,这个消耗就会变成的相当大。比如, 当你设计一个压力性能测试框架的时候,需要连续产生大量的并发操作,这个是时候,线程池就可以很好的帮上你的忙。线程池的好处就在于线程复用,一个任务处理完成后,当前线程可以直接处理下一个任务,而不是销毁后再创建,非常适用于连续产生大量并发任务的场合。

阅读全文

与linux多线程线程池相关的资料

热点内容
娘晚2罪孽泰国完整版 浏览:882
手机上什么app可以免费看vip 浏览:523
大上海电影国语版免费 浏览:564
日本大胸电视剧 浏览:310
电影抢先看网站有哪些 浏览:15
大数据专业和消防专业哪个好学 浏览:23
ebay的app叫什么 浏览:814
unfold3d展uv教程 浏览:293
长城涉密机怎么u盘导入文件 浏览:703
昌都设计师怎么创建一个人的网站 浏览:349
360检测网站漏洞 浏览:839
打印机文件在哪里打 浏览:508
初创公司开发app需要请哪些程序员 浏览:635
win10照片打开到文件夹位置吗 浏览:425
zipfilejava压缩文件 浏览:973
韩国理伦片中文 浏览:919
午夜影院最新网址 浏览:610
高教教学视频数据库是哪个 浏览:956
word脱壳 浏览:207
寻医问药好的app有哪些 浏览:588

友情链接