① 请问什么是网络爬虫啊是干什么的呢
网络爬虫(抄Web crawler)是一种按照袭一定的规则,自动地抓取万维网信息的程序或者脚本。
网络爬虫被广泛用于互联网搜索引擎或其他类似网站,可以自动采集所有其能够访问到的页面内容,以获取或更新这些网站的内容和检索方式。
(1)聚焦网络爬虫有哪些扩展阅读:
许多网站针对爬虫都设置了反爬虫机制。常见的有:
1、登陆限制:通过模拟登陆可以解决
2、用户代理检测:通过设置User-Agent header
3、Referer检测:通过设置Referer header
4、访问频率限制:如果是针对同一账号的频率限制,则可以使用多个账号轮流发请求;如果针对IP,可通过IP代理;还可以为相邻的两个请求设置合适的时间间隔来,减小请求频率,从而避免被服务端认定为爬虫。
② python里面的爬虫是什么
世界上80%的爬虫是基于Python开发的,学好爬虫技能,可为后续的大数据分析、挖掘、机器学习等提供重要的数据源。
什么是爬虫?
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
其实通俗的讲就是通过程序去获取web页面上自己想要的数据,也就是自动抓取数据
爬虫可以做什么?
你可以用爬虫爬图片,爬取视频等等你想要爬取的数据,只要你能通过浏览器访问的数据都可以通过爬虫获取。
③ 请问什么是网络爬虫啊是干什么的呢
网络爬虫( crawler)也叫网络蜘蛛(Web spider)、蚂蚁(ant)、自动检索工具(automatic indexer),或者(在FOAF软件概念中)网络疾走(WEB scutter),是一种“自动化浏览网络”的程序,或者说是一种网络机器人。
用途:它们被广泛用于互联网搜索引擎或其他类似网站,以获取或更新这些网站的内容和检索方式。它们可以自动采集所有其能够访问到的页面内容,以供搜索引擎做进一步处理(分检整理下载的页面),而使得用户能更快的检索到他们需要的信息。
④ 网络爬虫主要能干啥
网络爬虫是一种互联网机器人,它通过爬取互联网上网站的内容来工作。它是用计算机语言编写的程序或脚本,用于自动从Internet上获取任何信息或数据。机器人扫描并抓取每个所需页面上的某些信息,直到处理完所有能正常打开的页面。
网络爬虫大致有4种类型的结构:通用网络爬虫、聚焦网络爬虫、增量式网络爬虫、深层网络爬虫 。
1、通用Web爬虫
通用网络爬虫所爬取的目标数据是巨大的,并且爬行的范围也是非常大的,正是由于其爬取的数据是海量数据,故而对于这类爬虫来说,其爬取的性能要求是非常高的。这种网络爬虫主要应用于大型搜索引擎中,有非常高的应用价值。 或者应用于大型数据提供商。
2、聚焦网络爬虫
聚焦网络爬虫是按照预先定义好的主题有选择地进行网页爬取的一种爬虫,聚焦网络爬虫不像通用网络爬虫一样将目标资源定位在全互联网中,而是将爬取的目标网页定位在与主题相关的页面中,此时,可以大大节省爬虫爬取时所需的带宽资源和服务器资源。聚焦网络爬虫主要应用在对特定信息的爬取中,主要为某一类特定的人群提供服务。
3、增量Web爬虫
增量式网络爬虫,在爬取网页的时候,只爬取内容发生变化的网页或者新产生的网页,对于未发生内容变化的网页,则不会爬取。增量式网络爬虫在一定程度上能够保证所爬取的页面,尽可能是新页面。
4、深层网络爬虫
在互联网中,网页按存在方式分类,可以分为表层页面和深层页面。所谓的表层页面,指的是不需要提交表单,使用静态的链接就能够到达的静态页面;而深层页面则隐藏在表单后面,不能通过静态链接直接获取,是需要提交一定的关键词之后才能够获取得到的页面。在互联网中,深层页面的数量往往比表层页面的数量要多很多,故而,我们需要想办法爬取深层页面。
由于互联网和物联网的蓬勃发展,人与网络之间的互动正在发生。每次我们在互联网上搜索时,网络爬虫都会帮助我们获取所需的信息。此外,当需要从Web访问大量非结构化数据时,我们可以使用Web爬网程序来抓取数据。
1、Web爬虫作为搜索引擎的重要组成部分
使用聚焦网络爬虫实现任何门户网站上的搜索引擎或搜索功能。它有助于搜索引擎找到与搜索主题具有最高相关性的网页。
对于搜索引擎,网络爬虫有帮助,为用户提供相关且有效的内容, 创建所有访问页面的快照以供后续处理。
2、建立数据集
网络爬虫的另一个好用途是建立数据集以用于研究,业务和其他目的。
· 了解和分析网民对公司或组织的行为
· 收集营销信息,并在短期内更好地做出营销决策。
· 从互联网收集信息并分析它们进行学术研究。
· 收集数据,分析一个行业的长期发展趋势。
· 监控竞争对手的实时变化
⑤ 一个网站除了百度以外爬虫其爬虫是那哪些呀
网络爬虫按照系统结构和实现技术,大致可以分为以下几种类型:通用网络爬
虫(General Purpose Web Crawler)、聚焦网络爬虫(Focused Web
Crawler)、增量式网络爬虫(Incremental Web Crawler)、深层网络爬虫(Deep Web Crawler)。
实际的网络爬虫系统通常是几种爬虫技术相结合实现的[1]
。
通用网络爬虫
通用网络爬虫又称全网爬虫(Scalable Web
Crawler),爬行对象从一些种子 URL 扩充到整个 Web,主要为门户站点搜索引擎和大型 Web 服务提供商采集数据。
由于商业原因,它们的技术细节很少公布出来。
这类网络爬虫的爬行范围和数量巨大,对于爬行速度和存储空间要求较高,对于爬行页面的顺序要求相对较低,同时由于待刷新的页面太多,通常采用并行工作方
式,但需要较长时间才能刷新一次页面。 虽然存在一定缺陷,通用网络爬虫适用于为搜索引擎搜索广泛的主题,有较强的应用价值[1]
。
通用网络爬虫的结构大致可以分为页面爬行模块 、页面分析模块、链接过滤模块、页面数据库、URL 队列、初始 URL 集合几个部分。为提高工作效率,通用网络爬虫会采取一定的爬行策略。 常用的爬行策略有:深度优先策略、广度优先策略[1]
。
1)
深度优先策略:其基本方法是按照深度由低到高的顺序,依次访问下一级网页链接,直到不能再深入为止。
爬虫在完成一个爬行分支后返回到上一链接节点进一步搜索其它链接。 当所有链接遍历完后,爬行任务结束。 这种策略比较适合垂直搜索或站内搜索,
但爬行页面内容层次较深的站点时会造成资源的巨大浪费[1]
。
2)
广度优先策略:此策略按照网页内容目录层次深浅来爬行页面,处于较浅目录层次的页面首先被爬行。
当同一层次中的页面爬行完毕后,爬虫再深入下一层继续爬行。
这种策略能够有效控制页面的爬行深度,避免遇到一个无穷深层分支时无法结束爬行的问题,实现方便,无需存储大量中间节点,不足之处在于需较长时间才能爬行
到目录层次较深的页面[1]
。
聚焦网络爬虫
聚焦网络爬虫(Focused
Crawler),又称主题网络爬虫(Topical Crawler),是指选择性地爬行那些与预先定义好的主题相关页面的网络爬虫[8]。
和通用网络爬虫相比,聚焦爬虫只需要爬行与主题相关的页面,极大地节省了硬件和网络资源,保存的页面也由于数量少而更新快,还可以很好地满足一些特定人群
对特定领域信息的需求[1]
。
聚焦网络爬虫和通用网络爬虫相比,增加了链接评价模块以及内容评价模块。聚焦爬虫爬行策略实现的关键是评价页面内容和链接的重要性,不同的方法计算出的重要性不同,由此导致链接的访问顺序也不同[1]
。
1)
基于内容评价的爬行策略:DeBra将文本相似度的计算方法引入到网络爬虫中,提出了 Fish Search
算法,它将用户输入的查询词作为主题,包含查询词的页面被视为与主题相关,其局限性在于无法评价页面与主题相关 度 的 高 低 。
Herseovic对 Fish Search 算 法 进 行 了 改 进 ,提 出 了 Sharksearch
算法,利用空间向量模型计算页面与主题的相关度大小[1]
。
2) 基于链接结构评价的爬行策略 :Web
页面作为一种半结构化文档,包含很多结构信息,可用来评价链接重要性。 PageRank
算法最初用于搜索引擎信息检索中对查询结果进行排序,也可用于评价链接重要性,具体做法就是每次选择 PageRank 值较大页面中的链接来访问。
另一个利用 Web结构评价链接价值的方法是 HITS 方法,它通过计算每个已访问页面的 Authority 权重和 Hub
权重,并以此决定链接的访问顺序[1]
。
3) 基于增强学习的爬行策略:Rennie 和 McCallum 将增强学习引入聚焦爬虫,利用贝叶斯分类器,根据整个网页文本和链接文本对超链接进行分类,为每个链接计算出重要性,从而决定链接的访问顺序[1]
。
4) 基于语境图的爬行策略:Diligenti
等人提出了一种通过建立语境图(Context Graphs)学习网页之间的相关度,训练一个机器学习系统,通过该系统可计算当前页面到相关 Web
页面的距离,距离越近的页面中的链接优先访问。印度理工大学(IIT)和 IBM 研究中心的研究人员开发了一个典型的聚焦网络爬虫。
该爬虫对主题的定义既不是采用关键词也不是加权矢量,而是一组具有相同主题的网页。
它包含两个重要模块:一个是分类器,用来计算所爬行的页面与主题的相关度,确定是否与主题相关;另一个是净化器,用来识别通过较少链接连接到大量相关页面
的中心页面[1]
。
增量式网络爬虫
增量式网络爬虫(Incremental Web Crawler)是 指
对 已 下 载 网 页 采 取 增 量式更新和只爬行新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬行的页面是尽可能新的页面。
和周期性爬行和刷新页面的网络爬虫相比,增量式爬虫只会在需要的时候爬行新产生或发生更新的页面
,并不重新下载没有发生变化的页面,可有效减少数据下载量,及时更新已爬行的网页,减小时间和空间上的耗费,但是增加了爬行算法的复杂度和实现难度。增量
式网络爬虫的体系结构[包含爬行模块、排序模块、更新模块、本地页面集、待爬行 URL 集以及本地页面URL 集[1]
。
增量式爬虫有两个目标:保持本地页面集中存储的页面为最新页面和提高本地
页面集中页面的质量。 为实现第一个目标,增量式爬虫需要通过重新访问网页来更新本地页面集中页面内容,常用的方法有:1)
统一更新法:爬虫以相同的频率访问所有网页,不考虑网页的改变频率;2) 个体更新法:爬虫根据个体网页的改变频率来重新访问各页面;3)
基于分类的更新法:爬虫根据网页改变频率将其分为更新较快网页子集和更新较慢网页子集两类,然后以不同的频率访问这两类网页[1]
。
为实现第二个目标,增量式爬虫需要对网页的重要性排序,常用的策略有:广
度优先策略、PageRank 优先策略等。IBM 开发的
WebFountain是一个功能强大的增量式网络爬虫,它采用一个优化模型控制爬行过程,并没有对页面变化过程做任何统计假设,而是采用一种自适应的方
法根据先前爬行周期里爬行结果和网页实际变化速度对页面更新频率进行调整。北京大学的天网增量爬行系统旨在爬行国内
Web,将网页分为变化网页和新网页两类,分别采用不同爬行策略。
为缓解对大量网页变化历史维护导致的性能瓶颈,它根据网页变化时间局部性规律,在短时期内直接爬行多次变化的网页
,为尽快获取新网页,它利用索引型网页跟踪新出现网页[1]
。
Deep Web 爬虫
Web 页面按存在方式可以分为表层网页(Surface
Web)和深层网页(Deep Web,也称 Invisible Web Pages 或 Hidden Web)。
表层网页是指传统搜索引擎可以索引的页面,以超链接可以到达的静态网页为主构成的 Web 页面。Deep Web
是那些大部分内容不能通过静态链接获取的、隐藏在搜索表单后的,只有用户提交一些关键词才能获得的 Web
页面。例如那些用户注册后内容才可见的网页就属于 Deep Web。 2000 年 Bright Planet 指出:Deep Web
中可访问信息容量是 Surface Web 的几百倍,是互联网上最大、发展最快的新型信息资源[1]
。
Deep Web 爬虫体系结构包含六个基本功能模块
(爬行控制器、解析器、表单分析器、表单处理器、响应分析器、LVS 控制器)和两个爬虫内部数据结构(URL 列表、LVS 表)。 其中
LVS(Label Value Set)表示标签/数值集合,用来表示填充表单的数据源[1]
。
Deep Web 爬虫爬行过程中最重要部分就是表单填写,包含两种类型:
1)
基于领域知识的表单填写:此方法一般会维持一个本体库,通过语义分析来选取合适的关键词填写表单。 Yiyao Lu[25]等人提出一种获取 Form
表单信息的多注解方法,将数据表单按语义分配到各个组中
,对每组从多方面注解,结合各种注解结果来预测一个最终的注解标签;郑冬冬等人利用一个预定义的领域本体知识库来识别 Deep Web 页面内容,
同时利用一些来自 Web 站点导航模式来识别自动填写表单时所需进行的路径导航[1]
。
2) 基于网页结构分析的表单填写:
此方法一般无领域知识或仅有有限的领域知识,将网页表单表示成 DOM 树,从中提取表单各字段值。 Desouky 等人提出一种 LEHW
方法,该方法将 HTML 网页表示为DOM 树形式,将表单区分为单属性表单和多属性表单,分别进行处理;孙彬等人提出一种基于 XQuery
的搜索系统,它能够模拟表单和特殊页面标记切换,把网页关键字切换信息描述为三元组单元,按照一定规则排除无效表单,将 Web 文档构造成 DOM
树,利用 XQuery 将文字属性映射到表单字段[1]
。
Raghavan 等人提出的 HIWE 系统中,爬行管理器负责管理整个爬行过程,分析下载的页面,将包含表单的页面提交表单处理器处理,表单处理器先从页面中提取表单,从预先准备好的数据集中选择数据自动填充并提交表单,由爬行控制器下载相应的结果页面[1]
。
⑥ 网络爬虫是什么
网络爬虫又称网络蜘蛛、网络机器人,它是一种按照一定的规则自动浏览、检索网页信息的程序或者脚本。网络爬虫能够自动请求网页,并将所需要的数据抓取下来。通过对抓取的数据进行处理,从而提取出有价值的信息。
我们所熟悉的一系列搜索引擎都是大型的网络爬虫,比如网络、搜狗、360浏览器、谷歌搜索等等。每个搜索引擎都拥有自己的爬虫程序,比如360浏览器的爬虫称作360Spider,搜狗的爬虫叫做Sogouspider。
网络搜索引擎,其实可以更形象地称之为网络蜘蛛(Baispider),它每天会在海量的互联网信息中爬取优质的信息,并进行收录。当用户通过网络检索关键词时,网络首先会对用户输入的关键词进行分析,然后从收录的网页中找出相关的网页,并按照排名规则对网页进行排序,最后将排序后的结果呈现给用户。在这个过程中网络蜘蛛起到了非常想关键的作用。
网络的工程师们为“网络蜘蛛”编写了相应的爬虫算法,通过应用这些算法使得“网络蜘蛛”可以实现相应搜索策略,比如筛除重复网页、筛选优质网页等等。应用不同的算法,爬虫的运行效率,以及爬取结果都会有所差异。
爬虫可分为三大类:通用网络爬虫、聚焦网络爬虫、增量式网络爬虫。
通用网络爬虫:是搜索引擎的重要组成部分,上面已经进行了介绍,这里就不再赘述。通用网络爬虫需要遵守robots协议,网站通过此协议告诉搜索引擎哪些页面可以抓取,哪些页面不允许抓取。
robots协议:是一种“约定俗称”的协议,并不具备法律效力,它体现了互联网人的“契约精神”。行业从业者会自觉遵守该协议,因此它又被称为“君子协议”。
聚焦网络爬虫:是面向特定需求的一种网络爬虫程序。它与通用爬虫的区别在于,聚焦爬虫在实施网页抓取的时候会对网页内容进行筛选和处理,尽量保证只抓取与需求相关的网页信息。聚焦网络爬虫极大地节省了硬件和网络资源,由于保存的页面数量少所以更新速度很快,这也很好地满足一些特定人群对特定领域信息的需求。
增量式网络爬虫:是指对已下载网页采取增量式更新,它是一种只爬取新产生的或者已经发生变化网页的爬虫程序,能够在一定程度上保证所爬取的页面是最新的页面。
随着网络的迅速发展,万维网成为大量信息的载体,如何有效地提取并利用这些信息成为一个巨大的挑战,因此爬虫应运而生,它不仅能够被使用在搜索引擎领域,而且在大数据分析,以及商业领域都得到了大规模的应用。
1)数据分析
在数据分析领域,网络爬虫通常是搜集海量数据的必备工具。对于数据分析师而言,要进行数据分析,首先要有数据源,而学习爬虫,就可以获取更多的数据源。在采集过程中,数据分析师可以按照自己目的去采集更有价值的数据,而过滤掉那些无效的数据。
2)商业领域
对于企业而言,及时地获取市场动态、产品信息至关重要。企业可以通过第三方平台购买数据,比如贵阳大数据交易所、数据堂等,当然如果贵公司有一个爬虫工程师的话,就可通过爬虫的方式取得想要的信息。
爬虫是一把双刃剑,它给我们带来便利的同时,也给网络安全带来了隐患。有些不法分子利用爬虫在网络上非法搜集网民信息,或者利用爬虫恶意攻击他人网站,从而导致网站瘫痪的严重后果。关于爬虫的如何合法使用,推荐阅读《中华人民共和国网络安全法》。
为了限制爬虫带来的危险,大多数网站都有良好的反爬措施,并通过robots.txt协议做了进一步说明,下面是淘宝网robots.txt的内容:
从协议内容可以看出,淘宝网对不能被抓取的页面做了规定。因此大家在使用爬虫的时候,要自觉遵守robots协议,不要非法获取他人信息,或者做一些危害他人网站的事情。
首先您应该明确,不止Python这一种语言可以做爬虫,诸如PHP、Java、C/C++都可以用来写爬虫程序,但是相比较而言Python做爬虫是最简单的。下面对它们的优劣势做简单对比:
PHP:对多线程、异步支持不是很好,并发处理能力较弱;Java也经常用来写爬虫程序,但是Java语言本身很笨重,代码量很大,因此它对于初学者而言,入门的门槛较高;C/C++运行效率虽然很高,但是学习和开发成本高。写一个小型的爬虫程序就可能花费很长的时间。
而Python语言,其语法优美、代码简洁、开发效率高、支持多个爬虫模块,比如urllib、requests、Bs4等。Python的请求模块和解析模块丰富成熟,并且还提供了强大的Scrapy框架,让编写爬虫程序变得更为简单。因此使用Python编写爬虫程序是个非常不错的选择。
爬虫程序与其他程序不同,它的的思维逻辑一般都是相似的,所以无需我们在逻辑方面花费大量的时间。下面对Python编写爬虫程序的流程做简单地说明:
先由urllib模块的request方法打开URL得到网页HTML对象。
使用浏览器打开网页源代码分析网页结构以及元素节点。
通过BeautifulSoup或则正则表达式提取数据。
存储数据到本地磁盘或数据库。
当然也不局限于上述一种流程。编写爬虫程序,需要您具备较好的Python编程功底,这样在编写的过程中您才会得心应手。爬虫程序需要尽量伪装成人访问网站的样子,而非机器访问,否则就会被网站的反爬策略限制,甚至直接封杀IP,相关知识会在后续内容介绍。
开课吧广场-人才学习交流平台