导航:首页 > 网络数据 > 大数据平台构架

大数据平台构架

发布时间:2022-09-28 00:26:06

A. 大数据平台由哪5个部分组成简述各个部分内容的特点

一、数据采集

ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

二、数据存取

关系数据库、NOSQL、SQL等。

三、基础架构

云存储、分布式文件存储等。

四、数据处理

自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。

五、统计分析

假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

六、数据挖掘

分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。

七、模型预测

预测模型、机器学习、建模仿真。

八、结果呈现

云计算、标签云、关系图等。

B. 大数据时代如何做好数据治理

企业数据分析系统的数据来源是各个业务系统或手工数据,这些数据的格式、内容等都有可能不同。如果不进行数据治理,数据的价值难以发挥。只有对数据标准进行规范,管理元数据、数据监控等,才能得到高质量的数据。得到规范的数据后,才可在此基础上进行主题化的数据建模、数据挖掘、数据分析等。

2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划、POC尤其风生水起,带动了一波大数据应用的热潮,这个热潮和当初数据仓库进入中国时的2000年左右很相似:应用还没有想好,先归集一下数据,提供一些查询和报表,以技术建设为主,业务推动为辅。这就导致了这股Hadoop热潮起来的时候,传统企业都是以数据归集为主的,而BAT这样的企业则天生以数据为生,早早进入了数据驱动技术和业务创新的阶段。

随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破?相比传统数仓时代,进入Hadoop集群的数据更加的多样、更加的复杂、量更足,这个数仓时代都没有处理好的事情,如何能够在大数据时代处理好,这是所有大数据应用者最最期盼的改变,也是大数据平台建设者最有挑战的难题:数据治理难的不是技术,而是流程,是协同,是管理。 睿治数据治理平台平台架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

建立完整的、科学的、安全的、高质量的数据管控技术体系,是首要的任务。作为数据管控的基石,为了更好支撑后续工作的开展,技术体系必须一步到位,是功能完备、高质量、高扩展性的,而不是仅实现部分功能,或者功能不完善的“半成品”。

叠加更多业务数据、细化数据业务属性与管理属性、优化与调整数据管控流程,尤其是适应未来的现代企业数据管控制度的建立完善,是逐步积累推广、不断磨合改进的长期过程。这些工作应及早启动,并成为后续大数据平台建设工作的重点。

谈大数据时代的数据治理 当前要做的是功能框架的完善,而完善的着力点则是“数据资产目录”:用资产化的视角来管理一个企业的数据,只有把数据作为资产来认识和管理,大数据项目才能达成预期,也能够治理好。大数据时代带来的价值,个人认为主要有两个,一个是技术架构,主要是架构理念的进步,另外一个更重要的则是对数据的重视。大数据时代是数据的时代,IT向DT转型,不单单是BAT,所有的IT公司,未来都在数据这两个字上。

对于一个企业来说,把数据作为资产,才是建设大数据的最终目的,而不是仅仅是因为Hadoop架构带来性价比和未来的扩展性。当一个企业把数据作为资产,他就像管理自己名下存折、信用卡一样,定期梳理,无时无刻不关心资产的变化情况,关注资产的质量。

而资产目录就是管理资产的形式和手段,他像菜单一样对企业的资产进行梳理、分门别类,提供给使用者;使用者通过菜单,点选自己需要的数据,认可菜单对应的后端处理价值,后厨通过适当的加工,推出相应的数据服务;这是一个标准的流程,而这些流程之上,附着一整套数据管理目标和流程。

大数据平台以数据资产目录为核心,将元数据、数据标准、主数据、数据质量、数据生命周期、数据轮廓等信息在逻辑层面关联起来,在管理层面上整合成统一的整体,构建起数据管理体系,全面的支持数据服务等具体应用。

大数据平台实现了数据存储、清洗和应用。在数据汇入和汇出的过程中,需要对数据的元数据进行统一记录和管理,以利于后续的数据应用和数据血缘分析。数据质量一直是数据集成系统的基础工作,对数据的各个环节设置数据质量检查点,对数据质量进行剖析、评估,以保证后续应用的可信度。

在数据收集的过程中,随着数据维度、指标的聚集,如何找到所需的业务指标及属性,并且评估相关属性的业务及技术细节,需要对收集的所有数据进行业务属性,并进行分类,建立完善的数据资产目录。

数据资产目录是整个大数据平台的数据管理基础,而数据资产目录由于数据的多样性,在使用的过程中,必然涉及数据权限的申请、审批管控流程,而管控流程的建立依赖于相应岗位的设立和对应职责的建立。

大数据平台的数据管理架构规划,通过数据物理集中和数据逻辑整合,彻底摆脱企业“数据竖井”的困境。大数据平台数据管理架构分为功能架构、流向规划和数据架构三个层面。

数据管理功能架构:借鉴DAMA数据管理和DMM数据成熟度理论,着眼于数据管理技术和数据管理流程融合,组织数据管理功能。

数据流向规划架构:规划整个大数据平台的数据流向,并在数据流入、数据整合、数据服务的具体环节实现精细化管理。

数据管理的数据架构:以数据资产目录为核心,数据项为最小管理单元,将技术元数据(实体、属性和关系)、业务元数据和管理元数据(数据标准、主数据、数据质量、数据安全)融合为彼此紧密联系、密不可分的整体,共同构成精细化管理的数据基础。

数据管理在整个大数据平台不仅仅是一个主要功能模块,它还是整个企业层面数据治理的重要组成部分,它是技术和管理流程的融合,也需要合理管控流程框架下组织机构之前的协调合作。如何利用统一的数据管理模块对企业所有进入到数据湖的数据进行有效管控,不单单取决于数据管理模块本身,也取决于元数据的合理采集、维护,组织结构及制度的强力支持保证。

谈大数据时代的数据治理 大数据平台数据管理参照了DAMA对于数据管理的九个管理目标,并进行裁剪,并对部分管理目标进行了合并,并参照了CMMI制定DMM数据成熟度目标,采用循序渐进,逐步完善的策略对管理目标进行分阶段完成,制定完整的管控流程和数据治理规范,以便持续的对数据进行管理,递进实现DMM定义的成熟度目标。

亿信睿治数据治理管理平台和DAMA的对应关系如下:

谈大数据时代的数据治理 大数据平台数据管理的核心内容是数据资产目录,围绕数据资产目录的数据流入、数据整合、数据服务都是数据管理的核心。数据管理主要管理数据的流动,以及管理流动带来的数据变化,并对数据底层的数据结构、数据定义、业务逻辑进行采集和管理,以利于当前和未来的数据使用。为了更好的对数据进行管理和使用,制度层面的建设、流程的设立必不可少,同时也兼顾到数据在流动过程中产生的安全风险和数据隐私风险。

因此数据管理介入到完整的数据流转,并在每个节点都有相应的管理目标对应,整个数据流框架如下图所示:

谈大数据时代的数据治理 企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖的数据进行严格的出入库管理,保证数据可信度,并定期进行数据质量剖析检查,确保数据资产完善、安全、可信,避免“不治理便破产”的谶言。

C. 怎么搭建大数据分析平台

未至科技数据中心解决方案是以组织价值链分析模型为理论指导,结合组织战略规版划和面向对象权的方法论,对组织信息化战略进行规划重造立足数据,以数据为基础建立组织信息化标准,提供面向数据采集、处理、挖掘、分析、服务为组织提供一整套的基础解决方案。未至数据中心解决方案采用了当前先进的大数据技术,基于Hadoop架构,利用HDFS、Hive、Impala等大数据技术架构组件和公司自有ETL工具等中间件产品,建立了组织内部高性能、高效率的信息资源大数据服务平台,实现组织内数亿条以上数据的秒级实时查询、更新、调用、分析等信息资源服务。未至数据中心解决方案将,为公安、教育、旅游、住建等各行业业务数据中心、城市公共基础数据库平台、行业部门信息资源基础数据库建设和数据资源规划、管理等业务提供了一体化的解决方案。

D. 大数据技术架构都有哪些变化

1.从本地数据平台到基于云的数据平台


云可能是一种全新的数据架构方法的具颠覆性的推动力,因为它为公司提供了一种快速扩展人工智能工具和功能以获取竞争优势的方法。


2.从批处理到实时数据处理


实时数据通信和流媒体功能的成本已大大降低,这为其主流使用铺平了道路。这些技术实现了一系列新的业务应用:例如,运输公司可以在出租车到达时向客户提供精确到秒的抵达时间预测;保险公司可以分析来自智能设备的实时行为数据,从而将费率客制化;而且制造商可以根据实时的传感器数据来预测基础设施方面的各种问题。


3.从预集成的商业解决方案到模块化的同类佳平台


为了扩展应用程序的规模,公司往往需要冲破大型解决方案供应商所提供的遗留数据生态系统的限制。现在,许多公司正朝着高度模块化的数据架构发展,这种架构使用了佳的,经常使用的开源组件,这些组件可以根据需要被新技术替换而不会影响数据架构的其他部分。


4.从点对点到脱离数据访问


人们可以通过API来揭露数据,这样可以确保直接查看和修改数据的做法是受限且安全的,同时还可以让人们更快地访问常见的数据集。这使得数据可以在团队之间轻松得到重用(reused),从而加速访问并实现分析团队之间的无缝协作,从而可以更高效地开发各种人工智能用例。


关于大数据技术架构都有哪些变化,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

E. 如何搭建大数据分析平台

1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

F. 大数据技术架构的什么层提供基于统计学的数据

大数据技术架构的分析层提供基于统计学的数据。

大数据的四层堆栈式技术架构:

1、基础层

第一层作为整个大数据技术架构基础的最底层,也是基础层。要实现大数据规模的应用,企业需要一个高度自动化的、可横向扩展的存储和计算平台。这个基础设施需要从以前的存储孤岛发展为具有共享能力的高容量存储池。容量、性能和吞吐量必须可以线性扩展。

云模型鼓励访问数据并提供弹性资源池来应对大规模问题,解决了如何存储大量数据,以及如何积聚所需的计算资源来操作数据的问题。在云中,数据跨多个节点调配和分布,使得数据更接近需要它的用户,从而可以缩短响应时间和提高生产率。

2、管理层

要支持在多源数据上做深层次的分析,大数据技术架构中需要一个管理平台,使结构化和非结构化数据管理为一体,具备实时传送和查询、计算功能。本层既包括数据的存储和管理,也涉及数据的计算。并行化和分布式是大数据管理平台所必须考虑的要素。

3、分析层

大数据应用需要大数据分析。分析层提供基于统计学的数据挖掘和机器学习算法,用于分析和解释数据集,帮助企业获得对数据价值深入的领悟。可扩展性强、使用灵活的大数据分析平台更可成为数据科学家的利器,起到事半功倍的效果。

4、应用层

大数据的价值体现在帮助企业进行决策和为终端用户提供服务的应用。不同的新型商业需求驱动了大数据的应用。反之,大数据应用为企业提供的竞争优势使得企业更加重视大数据的价值。新型大数据应用对大数据技术不断提出新的要求,大数据技术也因此在不断的发展变化中日趋成熟。

G. 大数据应用平台开发是什么,有哪些公司

在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大版数据分析与权应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。

大数据平台应用开发是目前一个就业的热门方向,一方面是大数据开发的场景众多,另一方面是难度并不高,能够接纳的从业人数也非常多。大数据开发主要是满足企业在大数据平台上的应用开发,与场景有密切的关系。

H. 大数据平台提供的最基本的两个功能是什么

最基本的两个功能是:一数据收集;二数据分析归纳。
扩展:

一、它必须容纳海量数据

如果大数据分析平台无法扩展以存储或管理海量数据,那么仅仅提高速度所带来的作用相当有限。大数据分析平台必须能够容纳海量数据。

大规模并行处理是用于扩展分析处理的理想技术,因为它同时利用计算机群集的存储和计算能力。它不仅在性能上有所扩展,而且其处理传入的大量数据流的能力也相应提高。

此外,被设计为用于处理结构化数据的大数据平台使用MPP,可进一步加速处理操作,这是因为已针对分析程序优化了结构化数据,并减少了回答查询所需执行的搜索量。结构化数据库能够更好地了解数据在数据海洋中的位置,并且可以精确地存取数据。

一般来说,非结构化数据库难以扩展到采用列式设计的结构化数据库所能达到的级别。但是,大数据分析平台可能整合有能够提高非结构化数据库的可扩展性和性能的功能。

二、它必须非常快

简单来说,数字时代下,用户不希望在运行查询时长时间地等待结果。他们期望即时得到满足,获得即时结果,而对其他工作负载没有影响。这意味着大数据分析平台必须增强现有应用程序的性能,允许您开发具有挑战性的新分析方法,并提供合理、可预测和经济的横向扩展策略。

从技术角度来看,要满足这些期望,必须结合列式数据库架构(相对于基于行的非并行处理传统数据库)和使用大规模并行处理技术或者说MPP。

理由在于:列式设计可最大限度地减少I/O争用,后者是导致分析处理发生延迟的主要原因。列式设计还可提供极高的压缩率,相比于行式数据库,通常可将压缩率提高四倍或五倍。MPP数据仓库通常按比例线性扩展,这意味着如果您将双节点MPP仓库的空间翻倍,那么可有效将其性能提高一倍。

列式设计和MPP的结合不仅能够大幅提高性能(通常约100到1000倍),还可以实现更低且更透明的定价机制,例如针对每TB的模型而非传统的针对每处理器、每节点、每用户的定价方案。最终结果:性能呈指数级增长,同时大数据分析处理过程的总成本大幅降低。

三、它必须兼容传统工具

如果您的大数据分析平台依赖于“提取、转换、加载”(ETL)工具(如Attunity、Informatica、Syncsort、Talend或Pentaho)或基于SQL的可视化工具(如Logi

Analytics、Looker、MicroStrategy、Qlik、Tableau和Talena),请确保该平台已经过认证,可与所有这些工具而不仅仅是主要供应商的工具搭配使用。此外,确保您使用的所有工具和扩展技术符合最新版本的ANSI
SQL标准(SQL2011)。

四、它必须为数据科学家提供支持

数据科学家在企业IT中拥有着更高的影响力和重要性,因此大数据分析平台应在下述两个关键方面支持数据科学家。首先,新一代数据科学家采用Java、Python和R等工具来执行预测式分析。底层分析数据库应支持和加速创新型预测分析的创建过程。

其次,此平台应有助于将数据科学家的工作与业务目标联系起来。如今,数据科学家的角色常常从统计学家演变而来,后者相对而言更具学术意味,而且通常并不熟悉宏观业务目标。在某些情况下,会导致数据科学家得出的结论可能不完整、不准确或与业务成果无关。同时,商业人士常常乐于让统计学家在封闭的环境中工作,只在需要他们支招时才去找他们。

快速、高效、易于使用和广泛部署的大数据分析平台可以帮助拉近商业人士和技术专家之间的距离。

五、它应提供高级分析功能

根据您的特定使用情况,可能有必要深入查看由大数据分析引擎提供的内置SQL分析功能。您必须从底层查看,以了解究竟提供了何种SQL分析,而不用对该数据执行分析。例如,如果要对从设备获得的数据执行分析(如在物联网中),则需要诸如“时间序列分析”和“差距分析”等分析功能。如果没有这些功能,您可能需要花费时间整理数据或编写自定义代码

I. 怎样搭建企业大数据平台

步骤一:开展大数据咨询


规划合理的统筹规划与科学的顶层设计是大数据建设和应用的基础。通过大数据咨询规划服务,可以帮助企业明晰大数据建设的发展目标、重点任务和蓝图架构,并将蓝图架构的实现分解为可操作、可落地的实施路径和行动计划,有效指导企业大数据战略的落地实施。


步骤二:强化组织制度保障


企业信息化领导小组是企业大数据建设的强有力保障。企业需要从项目启动前就开始筹备组建以高层领导为核心的企业信息化领导小组。除了高层领导,还充分调动业务部门积极性,组织的执行层面由业务部门和IT部门共同组建,并确立决策层、管理层和执行层三级的项目组织机构,每个小组各司其职,完成项目的具体执行工作。


步骤三:建设企业大数据平台


基于大数据平台咨询规划的成果,进行大数据的建设和实施。由于大数据技术的复杂性,因此企业级大数据平台的建设不是一蹴而就,需循序渐进,分步实施,是一个持续迭代的工程,需本着开放、平等、协作、分享的互联网精神,构建大数据平台生态圈,形成相互协同、相互促进的良好的态势。


步骤四:进行大数据挖掘与分析


在企业级大数据平台的基础上,进行大数据的挖掘与分析。随着时代的发展,大数据挖掘与分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息,要想逐步实现这个功能,就必须对数据进行分析和挖掘,通过进行数据分析得到的结果,应用于企业经营管理的各个领域。


步骤五:利用大数据进行辅助决策


通过大数据的分析,为企业领导提供辅助决策。利用大数据决策将成为企业决策的必然,系统通过提供一个开放的、动态的、以全方位数据深度融合为基础的辅助决策环境,在适当的时机、以适当的方式提供指标、算法、模型、数据、知识等各种决策资源,供决策者选择,最大程度帮助企业决策者实现数据驱动的科学决策。


关于怎样搭建企业大数据平台,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

J. 大数据平台架构如何进行 包括哪些方面

【导语】大数据平台将互联网使用和大数据产品整合起来,将实时数据和离线数据打通,使数据能够实现更大规模的相关核算,挖掘出数据更大的价值,然后实现数据驱动事务,那么大数据平台架构如何进行?包括哪些方面呢?

1、事务使用:

其实指的是数据收集,你经过什么样的方法收集到数据。互联网收集数据相对简略,经过网页、App就能够收集到数据,比方许多银行现在都有自己的App。

更深层次的还能收集到用户的行为数据,能够切分出来许多维度,做很细的剖析。但是对于涉及到线下的行业,数据收集就需要借助各类的事务体系去完成。

2、数据集成:

指的其实是ETL,指的是用户从数据源抽取出所需的数据,经过数据清洗,终究依照预先定义好的数据仓库模型,将数据加载到数据仓库中去。而这儿的Kettle仅仅ETL的其中一种。

3、数据存储:

指的便是数据仓库的建设了,简略来说能够分为事务数据层(DW)、指标层、维度层、汇总层(DWA)。

4、数据同享层:

表明在数据仓库与事务体系间提供数据同享服务。Web Service和Web
API,代表的是一种数据间的衔接方法,还有一些其他衔接方法,能够依照自己的情况来确定。

5、数据剖析层:

剖析函数就相对比较容易理解了,便是各种数学函数,比方K均值剖析、聚类、RMF模型等等。

6、数据展现:

结果以什么样的方式呈现,其实便是数据可视化。这儿建议用敏捷BI,和传统BI不同的是,它能经过简略的拖拽就生成报表,学习成本较低。

7、数据访问:

这个就比较简略了,看你是经过什么样的方法去查看这些数据,图中示例的是因为B/S架构,终究的可视化结果是经过浏览器访问的。

关于大数据平台架构内容,就给大家介绍到这里了,不知道大家是不是有所了解呢,未来,大数据对社会发展的重大影响必将会决定未来的发展趋势,所以有想法考生要抓紧时间学起来了。

阅读全文

与大数据平台构架相关的资料

热点内容
彩票手机版本挂机软件 浏览:326
网上安装xp系统 浏览:965
codetank代码 浏览:737
企业网站推广的方法是什么 浏览:226
正常手机数据网络多少正常 浏览:76
怎么网络查询电费 浏览:638
数据库中的view 浏览:138
如何一次多选多行数据 浏览:140
苹果手机系统最安全吗 浏览:537
政企大数据 浏览:470
高光荣大数据技术 浏览:538
江苏美德好少年电子文件的内容 浏览:12
桌面文件夹显示四个 浏览:374
电脑重新系统后桌面文件恢复 浏览:831
哪个短视频app可以放大 浏览:770
刷宝app怎么上传作品 浏览:893
少儿编程需准备什么电脑 浏览:945
邻家女孩07版本下载 浏览:350
自学编程哪个程序好 浏览:253
不知道密码怎么撤销工作表保护 浏览:88