导航:首页 > 网络数据 > 城市地质三维大数据库

城市地质三维大数据库

发布时间:2021-03-05 15:10:35

❶ 对城市地质资料信息服务集群化产业化的几点思考

李 云 谢玲琳

(湖南省第二测绘院)

摘 要 本文分析了城市地质资料信息服务集群化产业化建设的主要意义和必要性,并结合湖南实际工作,对城市“两化”建设的主要思路和实施工程可能存在的问题进行了详细说明;最后提出了城市“两化”建设内容的几点建议。

关键字 城市地质资料 信息服务 集群化产业化

1 引言

为形成系统、规范、高效的信息化地质资料管理与服务模式,促进国土资源管理迈上新台阶。2009年,国土资源部部署了地质资料信息服务集群化产业化试点研究工作,从城市地质资料和矿山地质资料集群化管理和产业化服务两个方面开展研究,并取得了显著成效。湖南省国土资源厅积极推进地质资料信息服务集群化产业化工作,开展城市地质资料信息服务集群化产业化工作(简称城市“两化”),从城市地质资料的收集、整理、建库以及城市地质资料汇交管理机制等方面入手,建立城市地质资料综合数据库及管理系统,搭建资料汇交与共享服务平台,为资料管理提供强有力的技术支撑和信息保障。笔者结合湖南省城市地质资料信息两化建设谈几点粗浅看法。

2 城市两化建设的主要意义和必要性

2.1 为科学决策提供依据

科学合理的决策离不开充分、准确的基础数据。城市地质信息数据时效性强、涉及范围和内容广泛,通过数据集群化和汇交管理方法建设,科学管理、及时更新并共享海量城市地质数据,为领导科学决策提供及时、准确的数据参考。

2.2 为推动地质资料管理提供支撑

按照《地质资料管理条例》,城市地质资料处在汇交范畴,制订城市地质资料汇交管理机制,搭建信息共享平台,实现地质资料信息数据的动态更新,有力地推动地质资料科学化、规范化和精细化管理。

2.3 为地质资料开发利用提供思路

多年来,地质资料信息服务主要以地质找矿为中心,围绕矿产勘查展开工作。城市地质资料信息综合服务还处于起步阶段,城市规划、工程施工、地下空间适宜性评价等工作对城市地质资料信息需求量大,标准高。将分散的城市地质资料信息集群起来,转变服务模式,转被动服务为主动服务,拓展思路,深度挖掘城市地质资料信息,开发面向主体的服务产品。

3 城市两化建设的主要思路

3.1 以需求为导向,搭建城市地质资料信息管理服务平台

以服务城市发展为导向,以增强城市地质资料信息对经济社会建设发展的保障能力为核心,构建全方位、多元化、形式灵活的服务机制和新型地质资料管理和服务体系。搭建城市地质资料信息服务管理服务平台。

3.2 以标准规范化的思路和方法建设综合数据库

建立完善的综合数据库,建设、整合、质量检查、成果入库、更新维护标准、规范和制度体系;确保城市两化地质资料综合数据库建设、更新和维护应用过程中,按照统一的空间数据数学基础、统一的数据分类编码、数据格式、命名规则和统计口径等,确保各类数据操作行为的规范性,确保数据的现势性、准确性和有效性。

3.3 以政府、企事业单位和公众三个层面应用综合数据库

在政府层面实现各类数据的快速获取、分析和展示,为各类辅助决策提供信息保障。在企事业单位层面实现多元、异构、海量城市资料信息的集中查询和相关数据的统计分析结果图表快捷输出。在公众层面实现地质信息查询。

4 城市两化建设过程中可能出现的两个问题

4.1 传统的思维和管理模式与集群化产业化不协调

地质资料信息服务集群化产业化是地质资料管理与服务的创新举措。过去较长时间的思维和管理模式难以在短时间内调整与更新,地质资料系统化、信息化管理前期,数据整理、加工、入库工作量大。此外,管理模式上,集群化需标准、规范及制度来支撑,需要城建、国土行政管理部门及其资料保管单位、资料生产单位的密切配合。

4.2 城市地质资料汇交机制不健全

长期以来,城市地质资料未汇交到国土资源管理部门,导致这部分资料受重视程度、社会化利用程度不高。因地制宜地制定资料汇交机制,出台有力措施,监督资料汇交,才是实现城市地质资料集群化管理和产业化服务的出发点和根本点。

5 城市两化建设内容的几点建议

城市两化工作的内涵和外延比较广,其主要内容归纳为“建机制、建标准、建平台、建产业”。通过“四建”实现城市地质资料汇交顺畅,形成统一平台管理下的标准化数据,进而面向不同需求开发特定的数据产品,真正实现城市地质资料的科学化管理和可持续利用与更新。

5.1 城市地质资料汇交机制

城市地质资料,尤其是工程勘察资料一直保存于城建档案馆,按照《地质资料管理条例》要求,城市地质资料应该统一汇交到国土资源管理部门。城市两化工作需制定相关机制,明确城市地质资料汇交人、汇交类型、汇交行政管理部门、汇交接收点、汇交格式、监管与处罚方式等内容,形成行业规定,保障城市地质资料的按时、按量汇交。

5.2 城市地质资料建库标准

城市地质资料类型多,生产时间和生产者不同,导致地质资料数据格式多样。为规范城市地质资料数据建库,需要制定数据库建库标准,主要包含数据库内容、命名及编码规则、数据表结构、空间坐标系等内容。

5.3 城市地质资料管理平台

利用 2D、3D GIS 集成模式下地质信息管理与可视化技术,建设基于数据中心的多源、异构、海量数据管理平台。平台功能应包含数据管理与维护、数据分析与评价、数据 WEB 发布、数据立体展示等。其框架图为:

第八届全国地质档案资料学术研讨会文集

5.4 城市地质资料服务产品

服务对象:城市地质资料服务对象可以分三个层面:政府层面、企事业单位层面和公众层面。通过咨询方式,改变以前的被动服务为主动服务,了解服务对象对地质资料信息的需求,定制有针对性的服务产品。

服务内容:为政府部门城市发展规划和城市建设提供基础数据查询和专题分析结果,供决策参考;为企事业单位城市工程建设项目立项和工程施工提供钻孔地质、水文地质信息,减少工程投入,提供施工安全性;为社会公众提供地面沉降、地下水污染、农业地质等科普宣传信息。

❷ 城市地质

本次大会的交流形式主要有5个方面:

第一为以展馆的形式集中展示地质成果,多以国家的形式出现比如中国馆、美国馆、俄罗斯馆等,另外一些大型国际地质组织、大型石油公司、地质仪器公司、软件公司、出版社等也以展馆的形式集中展示成果,在展馆中展示城市地质成果的主要为中国馆和挪威馆。中国国家馆主要以地质专业的角度展示近几年来取得的丰硕成果,其中在工程地质专业下重点介绍了中国城市地质试点工作情况,包括上海城市地质及北京城市地质等内容。挪威国家馆中城市地质专题主要简单介绍了城市地质的主要研究内容,挪威国家地质调查局在奥斯陆地区开展城市地质调查项目,项目从2004年到2008年,主要研究内容包括地质资源、地质灾害等10个方面的内容。

第二、第三为以大会发言和展板的形式介绍城市地质。

由于没有专门的城市地质专题讨论会,因此直接以城市地质为命名的大会发言或者展板内容相对较少。其中大会发言中中国地质调查局的“中国城市地质”在“地质科学管理在可持续发展与人类安全中的作用”专题中发言。展板中“上海城市地质”在环境地质专题中展示。但是从单项的城市地质调查来看,与城市地质有关的内容非常多,本文将在后面重点介绍。

第四为专门交流会,时间上大多在休息时间为主,比如在8月10日(星期天)就安排了20场左右的交流会,内容方面多是专门、专题及综合讨论会的延续和深入,主要以参会的某专业领军人物召集本专业的相关人员对某个问题进行更广泛深入的交流。其中城市地球化学方法在城市环境研究中的应用专题邀请来自世界各地的专家一起讨论,内容主要包括地球化学本底、城市地区的系统地球化学成图、采样深度确定、样品选择、如何处理有机及矿业土壤、分析方法选择,有机污染物多环芳烃、多氯联苯、二恶英、邻苯二甲酸酯、溴化阻燃剂等的评价。

第五为野外地质考察,大会组委会在会前曾计划安排“瑞典与芬兰城市地质中工程地质”的地质考察,主要针对的地质问题有,福斯马克核电厂及核废料处置场,隧道工程、电厂、地下水问题,岩石应力测量,岩石稳定性监测等。赫尔辛基在建的隧道开挖与地下建筑工程,软土地基稳定性问题,地下水问题等。后来由于其他原因该计划取消。另外还安排了“奥斯陆城市地质化学”,即在8月6日下午城市地球化学成图专题讨论会后,由挪威、瑞典与芬兰地调局召集安排野外实地调查,主要现场了解已经成功进行了3年的试点项目即奥斯陆城市地球化学项目,关于地球化学调查方法与城市污染土的管理系统。

由于大会议题中涉及的专业非常多,一般都是有近30个左右的会议在同时进行,而每个发言者的时间一般在15~30分钟左右,因此只能选择与专业有关部分专题到现场听取较详细的汇报。在中午休会以及会后则抽时间对展板的内容进行学习和交流。其他内容只能通过大会交流材料摘要合集来了解和学习。

一、城市地质综述

(一)城市地质综合调查

1.国内城市地质综合调查

在“地质科学管理与可持续发展”专门讨论会中中国地质调查局做了中国城市地质调查工作的发言介绍,主要从中国城市地质的主要特点、主要任务、主要方法、主要成果及将来的工作方向等方面逐一阐述,其中主要任务有5个方面,分别是:三维地质调查及地下空间适宜性评价、地质资源调查及可持续发展评价、主要地质灾害调查及风险评价、环境地球化学调查及土壤与地下水环境评价、三维可视化信息系统的构建与管理等。另外上海地质调查研究院以展板的形式介绍了上海城市地质调查的主要内容和主要成果以及关于城市地质工作机制的探讨。

2.国外城市地质综合调查相关介绍

为更好地使地质科学满足社会经济的发展需要,挪威国家地质调查局在奥斯陆地区开展城市地质调查项目,项目主要研究内容有10个方面:氡灾害、地面沉降、城市土壤污染、地热、砂矿资源、地下水、矿产地质、基底稳定性与监测、流粘土灾害、地质教育。

东京城市可持续发展过程中面临的主要地质问题有地震、洪水、风暴潮、地面沉降等,这就要求地质学家和相关的政府部门必须致力于东京大都市城市地质状况的工作,自从1959年出版了东京相关地质成果图以来,又进行了多次的修订。另外,还建立了一个关于地下水利用和地面沉降的监测系统,另外地质信息系统,从1970年以来,形成了关于70000个钻孔的柱状剖面图的数据库。这些系统对政府还有科研者提供了很大帮助,比如建设地铁、高速公路、污水排放系统的重建等,还有地震灾害分析,研究隐形断层,地下空间开发等。

(二)城市水资源与环境

美国东南密歇根州城市化地区利用地理信息系统评估潜在的区域地下水污染,研究了多环芳烃、多氯联苯及铅等污染物在不同介质中对地下水的影响程度。英国对地下水进行战略性管理和治理,把最先进的知识和技术运用其中以维持高品质的地下水资源,满足经济和生态系统的需求。莫斯科地区城市地下水监测网络在20世纪已经开始建设,现已形成280口监测井,用于地下水动态监测。另外还对莫斯科地区人类活动对地下水环境的动态影响进行了研究,尤其是对地下水流场、水化学、水位及水温的影响,通过与背景区的对比发现;城市地区地下水的许多运动机制已经发生改变。葡萄牙介绍了基于GIS技术的地质图在城市地下水资源管理和评估方面的应用,利用此系统可获得大量的水文地质资料,可以建立含水层参数系统,对比岩性、含水层深度、地下水化学参数和土地使用情况等信息进行对下水脆弱性评价研究。瑞典则对基岩埋藏较浅地区的地下水的水质进行了评价。意大利就水文地质风险及其缓解措施进行了研究,1998年Sarno地区泥石流灾害发生后,意大利政府在全境内加强了对水文地质灾害的预防措施。 Re NDi S项目由意大利地质调查局实施,旨在确定灾害风险的类型及其特性,研究如何缓解地质风险的措施,提高对灾害的综合认识。另外还对意大利Friuli Venezia Giulia地区地下水水文地质进行了调查,结果表明此地区浅层地下水的主要补给来源是地表水渗入和冬季降水,这种补给方式使得浅层地下水很容易受到城市地区和工业排水的污染。

墨西哥Irapuato和Salamanca两个城市城市用水大多靠地下水,受污染水通过断层将污染带到深部含水层,通过对地下构造及水文地质的调查,使用SINTACS评估方法,并结合使用GIS技术,制定地下水保护计划。挪威卑尔根有许多世界建筑遗产,通过对古建筑附近地下水化学性质、地下水压力及土壤湿度等指标的长期监测,研究地下水环境对古建筑保存的影响。南非贝宁地区研究城市和农村地下水遭污染的一些特征,依据已完善了的地下水流的数值模型,通过研究可调节的管理策略来维持贝宁地区的高品质地下水的供应。摩洛哥绘制了丹吉尔地区含水层的污染风险地图,采用DRASTIC方法研究水文地质条件,研究地下水环境的脆弱性,结合城市规划对地下水污染风险进行分区和分等,研究表明东部工业区使含水层的脆弱程度增高,具有中度的污染风险。印度西北有几个城市在地表水和地下水的相互作用,地表水的不合理规划与利用导致地下水位上升造成建筑物地基、桥梁、隧道、管道等其他公共设施的损坏,其次地表水的污染物大量回落到地下水,污染了地下水。另一方面,过量开采地下水又使承压水位下降,扩大岩石孔隙,减少岩石强度,造成建筑物倒塌,如果合理管理和规划城市地区地下水和地表水的综合利用将可以避免以上灾难。另外还对印度普纳市东南部由固体废弃物处置引起的地下水污染进行了调查研究,普纳市附近的垃圾站已经使周围的12口井和两条溪流污染,并且距离堆放场越远的地方地下水受污染的状况越轻,那些远离堆放场的地下水没有受到污染,而且即使进‘行地下水回灌修复,堆填场附近的地区地下水仍然污染严重。韩国对地下水中砷污染的自然成因进行深入调查,研究了地下水p H值、沉积作用、变质作用对地下水中砷含量的影响。

(三)城市地质灾害综合调查与评价

1.城市地质灾害综合调查

俄罗斯地调局在莫斯科地区进行了地质灾害与地质环境综合评价项目,通过GIS信息技术对不同种类的地质灾害进行综合性的分析与评价方面进行了尝试研究。根据其滑坡、喀斯特岩溶、地下水位上升等灾害及其地质环境特征,结合城市发展对生态以及经济社会的要求,绘制了莫斯科地区1∶50000地质环境地图,结合城市的功能区划分地质环境分区,提出了一些关于安全城市发展的建议。另外还对2014年冬奥会举办地索契的地质灾害与环境风险进行了评估,主要包括地震构造、水文地质、工程地质和其他环境勘探研究灾害预测等。

在加拿大城市地区自然与人为环境灾害的调查与风险评价论文中,提出建立跨学科、跨地域、长期性的灾害风险综合研究是十分必要的,其目标是研究灾害的特征、破坏性和风险性,在复杂多变的条件下确定灾害风险性,通过监测研究等较少灾害对人类的危害。近年罗马城市化程度不断提高,罗马是一座历史名城,评价其地质灾害相对较难,复杂的全新世沉积物、较厚的人类活动造成的回填土以及大量的受保护的古建筑都给研究工作带来了一定难度,罗马主要的地质灾害有地面沉降、岩溶、滑坡、地震以及固体废料。基于GIS信息平台整合历史时期的相关地质信息,建立了3D地质模型,以半定量的方法评估地质灾害,所获得的方法体系适用于历史背景悠久的城市,更有利于城市的可持续发展与管理。巴西贝洛奥里藏特市未来地质资源与地质灾害研究项目已经在城市规划中得到了应用,通过对土地资源和洪水以及河流侵蚀等资源与灾害的分析,结合将来千万级大城市的定位,为城市规划提出城市发展的重点应从南部向北部转移。

2.城市地质灾害专项调查

1)地震与火山

在城市地质地震与火山灾害研究中,意大利有多项研究成果做了大会发言和展览。通过历史文献记载以及野外的调查,对1908年发生在意大利南部的墨西拿市地震的地质效应进行了评价,主要次生灾害有海啸、滑坡、泥石流、地裂缝、地面塌陷等。意大利Campi Flegrei活火山的城市化应急管理系统中,用高、中、低三种指数来定义火山爆发情景,应急规划区和人们可以紧急集合和疏散的区域与铁路系统的主要节点接近度。另外的研究还建立了火山碎屑流的动力学模型,为城市规划与灾害管理服务,在地震的监测与防治方面制定了相对成熟的预防方案。意大利在评价活动断层灾害如何更好地为土地利用规划服务方面也做了尝试研究。印度对新德里、孟买、班加罗尔等城市进行地震危险性分析,这些城市人口密度逐渐增大,一旦遭受地震将产生严重灾害,在城市规划中如何降低地震风险进行了初步研究。在孟加拉国吉大港地区地震危险性评估论文中,介绍了通过航空遥感与地球物理的方法寻找不同类型地质条件对地震波的反映情况,并将研究成果应用于在城市规划的地震灾害防治中。

随着城市化进程的不断持续,到21世纪中期将有一半人居住在城市,城市化使大城市越来越多,以至于有许多城市会处于地震多发区,美国、加拿大、日本还有一些其他国家的地震防治工程取得了很大成就,可以将地震对人的伤害降低到较低的水平。1989年和1994年加利福尼亚大地震造成不到70人死亡,但是在发展中国家对抗击地震灾害风险的研究还相对滞后。相关介绍还有日本在对地震灾害模拟方面的研究,北非阿尔及利亚、埃及、利比亚、摩洛哥、突尼斯等国家在城市规划中加强对地震灾害的合作研究与预防。

2)滑坡

韩国绘制了汉城方圆1500平方千米的滑坡预报地图,利用包括两个地形学和岩石学的因子,4个土壤属性因子建立logistic回归方程,预测潜在滑坡。意大利安科纳市滑坡预警预报系统主要包括7个表面污染监测系统和33个GPS大地测量,同时也建立了三维立体的钻孔控制系统,监测数据实时传递给监测中心,以便及时进行滑坡的预警预报。另外运用不同年份的土地利用类型图与滑坡分布图进行叠加分析,研究大城市地区滑坡的风险性。相关的研究工作还有莫斯科对滑坡和泥石流的建模与监测,孟加拉国吉大港城市的无序发展导致滑坡灾害,巴西、印度、意大利等一些城市对滑坡防治的研究。

3)城市环境地球化学

在美国克罗多州丹佛大城市地区开展了1972年和2005年的土壤地球化学环境变化对比研究工作,2005年美国地质调查局采集表层土壤497个样品,涉及市区1165平方千米的区域,测定44种元素。然后将测得成果与1972年的样品数据进行对比后发现锌、砷、汞、镉、铜和锑的变化规律非常复杂,而铅则有非常明显的范围扩大的趋势。在土壤和地下水潜在污染的分析评估模型方面美国密歇根州作了研究,对比不同地区土壤及地下水各种污染特征,对地下水来说含有氯的挥发性有机化合物和六价铬具有最高的危险性,而土壤中多氯联苯、汞、多环芳烃具有最高的危险性。

英国开展了伦敦、贝尔法斯特、格拉斯哥等22个城市的地球化学基线调查,测定46种元素或参数,采集近16000个样品,提供了独一无二的英国城市土壤地球化学图。另外还对内分泌干扰物质(环境激素)对人类健康的影响方面做了深入的研究,近50年来,内分泌干扰物在环境中的含量有了很大的增加,包括农药、阻燃剂、防腐剂、表面活性剂等产品,以及化妆品、洗涤剂、食品包装和其他化学物质。许多内分泌干扰物,包括多氯联苯、二恶英和滴滴涕的代谢产物,在环境中有广泛存在,并且由于其亲酯性,可通过生物链进入人体,并通过女性传递给后代。此外,人们的饮食中也含有越来越多的动物激素。通过研发发现,这些越来越多的内分泌干扰物会诱发癌症特别是乳腺癌和前列腺癌。

俄罗斯许多城市表层土壤可能对人体健康存在威胁,在政府管理及决策时应以生态安全为目的有机考虑生态、经济、社会等因素,AHP评价方法的研究可为决策者提供更具体的研究成果,保证表层土壤的安全利用,另外还介绍了不同的污染城市土壤修复技术。

1998年瑞典开始了城市地球化学填图计划,其目的是能够给社会提供可靠的环境背景数据信息,已经有4个城市获得多种样品包括土壤(表层,深层)、苔藓植物等的45种元素的背景值,如银、砷、金、钡、铍、铋、镉、钴、铬、铜、铁、镧、锂、镁、锰、钼、镍、磷、锑、硒、锡、钽、钍、钛、铊、铀、钒、钨、钇和锌等,另外也对如何在地球化学统计计算方面避免一些失误作了简单介绍。

在城市区域的污染范围确定方面,挪威地调局在奥斯陆地区进行了试点,布置穿越市区的南北方向长120千米的剖面,沿着剖面的横截面收集土壤和植物样本,研究的主要目的是研究反映在土壤和植物化学中城市污染的影响和范围。检测指标为银,铝,砷,金,硼,钡,铋,钙,镉,钴,铬,铜,铁,镓,汞,钾,镧,镁,锰,钼,钠,镍,磷,铅,钯,铂,硫,锑,钪,硒,锶,碲,钍,钛,铊,铀,钒,钇和锌等。在挪威的三个主要城市的表层土壤有机污染物调查已经完成,在奥斯陆、卑尔根和特隆赫姆分别采集719、309和75个样品,分析了样品中多环芳烃(PAHs)含量情况。结果表明,内城显示高浓度的PAHs,城郊土壤含量相对较低,PAHs的来源主要为燃烧源。另外还介绍了城市中有毒污染物及其分散机理的研究成果,人类过多的活动导致城市环境中介入了大量的有毒污染物,市中心已被证实含有大量的重金属如铅、镉,还有其他有机有毒物,如二恶英、多环芳烃、多氯联苯等,在挪威的城市土壤里检测到了很高浓度的这些有毒物。另外在31座港口和海边城市的海底沉积物中也有较高的检出率,总的说来海底沉积物也被严重污染。城市地球化学的研究表明很多污染物是通过雨水传播的,目前正在研究城市土壤环境对海水环境的影响。

葡萄牙介绍了北部城市的氡危机情况,开展调查的目的是评估葡萄牙北部城市的氡浓度和控制各种氡的最重要的地理因素,研究表明葡萄牙北部城市区域在土壤和地表水出现中等偏高的氡危机。另外通过对1987~1992年室内氡辐射的测定,获得了大量数据并进行了统计学分析,对氡辐射风险进行了预测,为规划和建设提供支持。

地理信息系统(GIS)和多元统计方法被用来评估追踪香港城市郊区及乡村公园的重金属污染,和乡村公园相比,铜、铅、锌在城市和郊区的土壤中含量较高。元素的主成分分析与聚类分析结果显示主要元素和痕量元素在城市、郊区、乡村公园的聚类特征都不相同。运用地球化学与地球物理相结合的方法,研究波兰南部西里西亚工业区土壤中的地球化学污染异常,来精确绘制污染地区和绿色生态评估区域,该种方法经济有效,降低样品数量和化学分析,实地样品只局限于那些污染严重的地区。芬兰根据两个样品深度研究城市土壤地质化学基线,已经初步绘制了地质化学图。巴西圣保罗市在城镇体系中用铅同位素作为大气污染物示踪来研究铅污染的来源,铅的主要来源为工业废气、城市废气和汽车尾气。丹麦在土壤原位分析测试评价以及污染土壤原位修复方面介绍了最新研究成果。

3.其他

菲律宾在地质和地质灾害评估纳入环境影响评估和全国土地利用规划系统并成为一种制度方面,进行了有益的探索。另外俄罗斯、意大利、芬兰等城市的工程地质研究,意大利城市地区地面沉降的控制研究,以及地质信息系统与地质建模等方面由于篇幅限制不在详细介绍。

二、城市地质的几点思考

1.城市地质的核心部分仍是地质学

随着科技与社会的进步,城市地质学的概念不断在变化和拓展。城市地质学的核心部分仍是地质学,研究区域多为人口稠密、工业发达及城市化水平高的地区,这就要求在城市地区地质学研究的精度要大大提高。世界上每个城市所面临的主要地质问题不尽相同,城市地质学几乎会碰到地质学领域的所有问题和难题。城市地质学的单项研究比如城市工程地质、城市水文地质、城市地球化学等均为地质学的延伸或互相渗透,其内容可以延伸为城市的资源、环境、工程及安全等的可持续利用与发展方面提供保障。

2.城市地质的最大特点是综合性

本次33届国际地质大会由英国地质调查局提出“One Geology”的概念,目前翻译成中文比较多的提法是“大地质”,主要强调全球的统一成图,所有国家的联合合作成图,不同专业地质图的相互叠加与高效利用。城市地质其实可以理解成某城市的“One Geology”,这里不仅有整个城市地区的统一成图,更重要的还有众多地质问题的综合调查与研究,而不单单是某项地质工作的调查与评价。

城市地质学的性质,注定了其多参数、多目标、多学科综合的特性。城市地质学的综合属性,注定要组织跨学科、跨行业、跨部门的艰苦探索和攻关创新,注定了从事调查、研究的专家必须具备多元的知识结构和现代的管理理念。城市地质学知识系统的复杂性,注定了这门学科必须具备当代新学科、新技术、新方法的侧向分工和优势集成。城市地质学的用户众多,注定了其操作层面和服务平台必须具有多参数、立体化的“数字城市”的现代结构。

3.城市地质的生命力在于它的应用性

城市地质的特点决定了其成果必须具有很强的应用性和实用性,即如何使地质成果更好地应用到城市的规划、建设与管理中。在服务于城市规划方面,如何更好得为城市总体规划、区域性规划提供基础地质资料、为专业性规划提供相关的专项研究成果、为城市重大工程的规划选址提供综合性成果;在服务于城市建设方面,如何为地下空间的开发利用、重大市政工程所面临的地质问题、建筑工程的建设等方面发挥作用;在服务于城市安全方面,可为城市生命线(地铁、高架、防汛墙、天然气管网等)的安全运营、城市用水安全与应急水源地建设、防治地质灾害研究以及地质灾害应急抢险等方面服务;在服务于土地资源管理方面,可为土地利用总体规划修编与实施评价、基本农田的划定与保护、后备土地资源的利用、土地复垦与土壤修复、土地利用绩效评估等方面服务;在服务于生态环境保护方面,可为水土体的环境质量监测、垃圾处置场环境风险评估、生态住宅等方面服务。

4.城市地质的活力在于方法技术的革新

城市地质学作为一门学科,其自身理论体系的构建相对较复杂。从城市地质研究的内容来看,每一项都有各自的理论体系,从专业上来分比如基岩地质、第四纪地质、水文地质、工程地质及地球化学等,从研究领域来分比如资源、环境及工程等。另外不同的城市其所开展的有针对性的研究课题也不尽相同,但归根结底还是与该城市所面临的主要地质灾害与地质问题有关,针对每种地质灾害的研究都有相互独立的理论体系,比如地面沉降、滑坡、泥石流、活动断层等。如何将不同的理论体系提高升华到城市地质的理论体系是一个非常复杂的难题。城市地质研究中的方法技术的革新将有助于城市地质理论体系的完善和构建。在进一步完善城市地质调查技术和工作流程规范基础上,编制《城市地质调查工作指南》,提高城市地质调查工作的效率。借助相关领域的新技术、新方法,尤其是GPS、GIS、RS等新技术,在调查的方法手段、不同专业领域的集成综合评价方法技术、地质灾害的动态监测与预警预报、地质成果或结论的从定性到定量判别、地质环境的数学模型与经济学分析、城市地质工作在城市经济发展中的贡献度等方面不断有新的突破和认识,不断提升城市地质的活力。

5.城市地质发展的动力要依托新的机制

我国城市地质试点工作已经开展了4年,每个试点城市都取得了丰硕的成果。新的工作机制探索将有助于城市地质工作快速的发展。今后城市地质工作中将加快建立健全长效管理机制,切实增强城市地质工作对经济社会发展的持续保障能力。完善深化调查成果和建立城市地质工作长效机制相结合,进一步加强城市地质调查成果应用示范,推进调查成果的深化和转化。深化完善地质信息动态更新、社会共享机制和建立城市地质工作长效机制相结合。深化完善调查成果转化工作与建立城市地质工作长效机制相结合。新的工作机制探索的目的主要还是使城市地质工作更好的纳入到城市规划与建设体系当中,以便更好的发挥城市地质工作的经济社会效益,提高在城市经济社会发展中的贡献度。

由于时间紧迫,城市地质涉及的专业众多,关于本次大会中城市地质研究内容的介绍难免会有些遗漏,另外文中的其他差错,敬请批评指正。在城市地质论文摘要编写、展板制作过程中得到了中国地质调查局庄育勋主任、翟刚毅处长、程光华教授,以及上海市地质调查研究院魏子新院长、严学新总工、王寒梅副总工、史玉金主任工程师等领导专家的悉心指导,特此感谢。在参加第33届国际地质大会期间以及本文的编写过程中,得到了与会的中国地质调查局代表团诸位团友的大力支持和帮助,在此一并表示衷心感谢。

(何中发执笔)

❸ 数字城市的基础地理数据库包括哪些

国家基础地来理信息数据源库是存储和管理全国范围多种比例尺、地貌、水系、居民地、交通、地名等基础地理信息,
包括栅格地图数据库、矢量地形要素数据库、数字高程模型数据库、地名数据库和正射影像数据库等。

延伸:
国家基础地理信息系统是以形成数字信息服务的产业化模式为目标,通过对各种不同技术手段获取的基础地理信息进行采集、编辑处理、存贮,建成多种类型的基础地理信息数据库,并建立数据传输网络体系,为国家和省(市、自治区)各部门提供基础地理信息服务。它是一个面向全社会各类用户、应用面最广的公益型地理信息系统。是一个实用化的、长期稳定运行的信息系统实体。是我国国家空间数据基础设施(NSDI)的重要组成部分,是国家经济信息系统网络体系中的一个基础子系统。

❹ 城市地质三维建模的数据需求与数据组织

城市地下地质空间勘探研究不仅包括浅部的工程建设层,还应包括中部、深部地层。相对于其他地质勘察项目而言,城市地质勘察尤其是中心城区的地质勘察程度较高、资料较丰富,既有大量可精确描述地层的钻孔数据,又有大量根据钻孔和物探数据解释得到的剖面图、地层平面分布图、地质构造图等人工解释数据,这些数据表达地质空间信息各有特点,又都不同程度地存在表达三维信息的局限性和不完整性,如何充分利用各种数据的特点,通过数据耦合的方式建立城市地下地质空间三维地质模型是建设城市地下地质空间信息系统建设的关键。

(一)基础地理空间数据

这类数据主要包括地理底图(地形图)和遥感影像,地理底图主要用于钻孔点位、三维模型和基础地理空间信息的叠加定位,遥感影像则作为地表纹理数据叠加在地形模型上。地理底图类数据要求为GIS矢量数据格式(如MAPGIS *.wt,*.wl,*.wp文件),这类数据一般按照水平分幅、垂向分图层的方式进行组织,如图3—1所示。遥感影像数据一般为JPG、TIFF格式,需要包含用于校正的控制点信息。

图3—1 海量底图逻辑结构图

(二)钻孔类数据

城市三维地质建模中最常见的一类建模数据就是钻孔数据。工程钻探法是获取地下三维空间信息的重要方法,通过钻孔可以直接获取详细的岩土层分布状况,取得的岩芯(土样)还可以进行相应的室内试验获得其物理力学指标。钻孔资料因其直观、准确、详细的特性在三维地层模拟中具有至关重要的意义,根据钻孔数据构建三维地层实体模型一直是国内外三维地质建模领域研究的热点,并取得了一定的研究成果。

钻孔基本资料表,钻孔土层描述表,整体(标准)地层描述表是基于钻孔进行三维地质建模所必需的几个核心表,三个表所含有的建模必要字段、名称可以不与下述表的字段名称相同,但所代表的意义一定要相同。

1.钻孔的基本资料表(表3—6)

表3—6 钻孔基本资料表

说明:①日期型数据要统一格式;②孔口标高X,Y最好为国家坐标系;③其中1,6,9,10,11 项为三维建模必需项。

2.钻孔的土层描述表(表3—7)

表3—7 钻孔土层描述表

说明:①分层序号为同一钻孔内不同土层的顺序号;②其中1,2,3,4,7项为三维建模必需项。

3.全局地层描述表(表3—8)

表3—8 全局地层描述表

说明:①1,2,11字段为三维建模必需项;②说明字段“地层名称”和其他表中的字段“土质类型”是一致的。

全局地层描述表实际上就是一个“基本地层层序表”,其形成规则是:按照地层沉积顺序和形成年代,结合岩土体物理力学指标数据,自上而下按照由新至老的顺序进行排列。在形成此基本层序表的过程中,可能会出现地层顺序无法排列的情况,这需要结合工程勘察人员的经验,按照地层叠覆律进行确定。简单地说,地层层序要求建模区域内所有的地层都被自上而下的排序,并且在各个钻孔中的顺序都不变。

事实上,地层层序并不见得对所有的钻孔都合适。由于地层尖灭,透镜体等存在于局部区域,特定的地层可能只在一部分区域连续,而在其他地方被另外的地层切割。采用“全局地层层序”的概念能够容易的表达这些复杂的地质现象。

下面是关于“全局地层层序”必须满足的一些基本规则:

(1)如果在一个钻孔中,地层A在地层B的上面,则在“全局地层层序”中,A在B的上面。

(2)如果在钻孔1中地层A在地层B的上面,而在钻孔2中地层B又在地层A的上面,则:

①在地层层序中至少有3个地层;

②必须使用其他的钻孔来确定地层层序。

(3)“全局地层层序”中地层的数目不少于:

各个钻孔的地层数目的最大值+在该钻孔(即具有最大钻孔数目的钻孔)中不存在的所有地层的数目。

4.其他数据表

包括土试数据表等不是三维地质(结构)建模所必须,在此省略。

(三)平面地质图类数据

1.一般格式

要充分利用平面地质图所蕴涵的地质构造信息来建立三维地质结构模型,需要首先将现有的纸质图件数字化为电子图件或者将原有的电子图件转化为建模系统能够识别的电子图件格式,如下:

(1)平面地质图采用GIS图形数据格式(如MAPGIS *.wt,*.wl,*.wp文件)进行存储,可利用GIS图形编辑模块进行查看、编辑、修改等操作。

(2)一个地质平面图可用一个工程文件(如MAPGIS *.mpj)来存储。这个工程文件须记录完整的平面图信息,如坐标系类型、投影参数、比例尺等。

(3)每一个工程文件(如MAPGIS*.mpj)由以下文件组成(其中第一个是必须有的):

①区文件记录原地质平面图中的地质单元分区信息。主要属性字段有:ID,面积,周长,区域类型,地层编号,备注。

②弧段属性结构,记录地质单元分区中的线属性。主要属性字段有:ID,长度,弧段类型,断层编号,盘类型等。

③*.wt:图上必要的标注信息。

④另外,如果有其他内容需要记录下来,可另在工程文件中附加其他点、线、面文件。

2.等值线格式

有些平面地质图含有等高线信息(如地层埋深等值线),这些等值线对建模有同样的重要意义,需要将等值线信息进行标准化,记录下等高线类型、数值等信息。

等值线数据可采用GIS工程文件格式(如MAPGIS *.Mpj)组织,也可以采用单独的点、线文件格式(如MAPGIS *.wt、*.wl)组织。但无论采用何种组织方式其包含的三维地质建模基本信息如下表所示:

(1)顶、底板埋深等值线文件(结构建模)格式。地层顶、底板埋深等值线文件属性结构如表3—9所示。

表3—9 地层顶、底板埋深等值线文件属性结构

(2)等厚度线文件(结构建模)。地层等厚度线文件属性结构如表3—10所示。

表3—10 地层等厚度线文件属性结构

(3)高程点文件(结构建模)。高程点文件属性结构如表3—11所示。

表3—11 高程点文件属性结构

(四)地质剖面类数据

每个地质剖面采用一个GIS工程文件(如MAPGIS *.mpj)来存储,地质剖面数据采用GIS图形数据格式(如MAPGIS*.wt,*.wl,*.wp)分图层进行存储,可利用基于GIS图形编辑功能开发的“地质剖面编辑器”查看、编辑、修改剖面图。

在地质剖面输入与标准化处理时,采用以剖面起始点、终止点、拐点为地质剖面空间形态表示核心数据,轮廓区域作为三维地质结构建模核心数据。对于每个剖面工程文件,主要记录以下图形和属性信息:

1.定位点文件(必备)

剖面定位点文件要在剖面上标识出剖面起点(X0,Y0)、终点(Xn-1,Yn-1)剖面所经过的中间点(Xi,Yi)。由于剖面图在垂直方向上没有转折,另外用户还要输入两个以上高程控制点Hj和Hj+1,这样系统就可以自动计算剖面的水平、垂直比例尺及剖面实际空间位置,如图3—2所示。

图3—2 剖面定位点标识示意图

定位点属性结构如表3—12所示。

表3—12 定位点属性结构

2.地层区文件(结构建模)

地层区文件中既要定义每个区的属性结构还要定义构成区的弧段的属性结构(表3—13,表3—14)。

表3—13 地层区文件区属性结构

表3—14 地层区文件弧段属性结构

3.地层线文件(结构建模)

地层线文件属性结构同地层区弧段属性结构。

4.钻孔线文件(钻孔建模必备)

钻孔线文件属性结构如表3—15所示。

表3—15 钻孔线文件属性结构

5.断层线文件(断层建模必备)

断层线文件是进行基于剖面的断层建模所必需的数据,其属性结构如表3—16所示。

表3—16 钻孔线文件属性结构

(五)地质空间数据的规范化和归一化

城市地质空间基础数据,数据层面多,来源不同,采集于不同时期,数据类型亦不同(地理底图、遥感影像、地质图、钻孔等),即是都是地图数据,其投影方式、坐标体系、地图单位等参数也不一定完全一致,进行三维地质建模前除按照上述数据需求准备数据外,按照一定的标准对系统数据进行规范化处理是非常有必要的。所谓数据的规范化处理是指按照国家标准、行业标准、地方标准或系统建设标准对数字化后的地质资料分类进行数据的预处理、概括处理等。

1.数据预处理

坐标配准:将各层次数据的空间坐标体系都转换成统一的坐标系(如城市坐标),地图单位也要统一(如以米为单位);投影规一化:用GIS的投影转换功能把各数据层转换成统一的投影方式;遥感影像矢量化:遥感数据必须经过矢量处理、加注属性、建立空间拓扑关系后使用;确定统一边界:对研究区域确定统一的标准边界,用叠加和切边操作使各数据层的边界完全一致。

2.三维建模数据的概化处理

在所有的数据规范化处理工作中最关键的也是最具挑战性的工作是地层、钻孔、剖面、构造地质图等三维地质资料的概化解释工作。也就是要建立三维地质模型,再通过必要的渲染和可视化表达分析手段模拟城市地下地质空间的状况。城市三维地质建模主要使用两类数据:一类是反映地表变化情况的基础地理数据,如地理底图、DEM数据、遥感影像数据,这类数据对三维地质模型只起空间定位、地形约束、修饰作用;另一类是映地下地质结构变化情况的地质勘探解释数据,如钻孔、剖面、地质图等,进行三维地质建模时需要使用这类数据精确确定地层、断层等点状、线状、面状及体状的地质构造信息,这类数据是进行三维地质建模的关键数据。由于三维地质模型的确定性和拓扑严格性,相应地也要求这类数据必须具有严格的、确定的几何和拓扑一致性。

考虑到项目搜集到的钻孔数据多来自于不同时期、不同项目的成果,由于当时勘探目标、所依赖的标准不同,甚至因不同人的认识不一样,导致对同一区域或相近区域地质现象解释的详细程度和划分结果不一样,甚至差别非常大或是自相矛盾,这对于强调全市范围内应用的城市地质调查成果表达和三维地质建模来说是无法接受的。基于不同勘探资料解释得到的剖面图、地质图也存在同样的问题,且由于编制这些图的原始目的主要是进行成果的表现,制图人员多是从制图的角度考虑如何修饰、如何好看,并没有过多考虑图面上地质元素的拓扑、几何的严格和一致性,而这些都是进行三维地质建模所必需的。

鉴于上述原因,系统建设过程中需要结合三维地质建模对数据精度和一致性的要求,按一定的规则对原始钻孔、剖面、地质图进行概化处理,使得这些反映垂向地质结构的数据逐步变得有序化,为进一步自动或半自动生成三维地质模型奠定基础。

上述工作主要借助现成的GIS工具(如MAPGIS等)软件或其他工具软件完成结合专业人员知识经验完成。

❺ 如何在gis里建立三维城市模型

用cityengine,根据你已经有了的数据,分分钟可以做完。
3.18
既然有人感兴趣我就多说几句专。
1、你已属经有了DEM,那么下载一张影像图浮在DEM上可以基本上把三维地形做出来。
2、在GIS里面做好建筑基底要素数据库,其中就包括了你的建筑层高、高度等等属性。
3、看网上教程学会在cityengine里写几个简单的建筑体块规则。
4、通过拍照获取建筑立面材质、开窗、风格等,将规则赋予建筑基底就能生成了。
之所以建议使用cityengine的原因是题主作为规划出身,掌握并熟练ArcGIS挺重要的。cityengine与ArcGIS天然衔接,学习cityengine的同时也能将ArcGIS也学习了。同时cityengine的大批量建模对城市规划的建模优势很大,而3Dmax或SU与之相比的话显得精细化了,无疑增加了工作量。

❻ 地质空间数据库建设

一、内容概述

在地质制图技术手段的变革中,真正具有革命性的是与数字式地质图生产模式相关的技术进步,涉及从野外地质工作直至最终成果提交的全过程。建立国家数字式地质空间数据库,是推行这种新工作模式的总体目标和必然结果。为此,各国都下大力气狠抓数据库设计、建设和不同类型数据库的联网,大力推进地质制图的标准化,除了对符合现代要求的现有数据进行数字式信息提取之外,还积极创造条件把数字式工作方式延伸到最基础的野外工作环节。GIS的产生、发展与机助制图系统存在着密切的联系,两者的相同之处是基于空间数据库的空间信息的表达、显示和处理。GIS包含了机助制图系统的所有组成和功能,并且GIS还有数据处理分析的功能。它用空间数据库和属性管理地质数据,包括了图形数据及属性数据,并可对二者的数据进行空间分析和空间查询。GlS技术是数据库技术、图形图像处理技术和数据分析与处理技术的综合,在地质制图及多学科研究数据的处理、集成、模拟、显现乃至成果图件的编绘等方面,都起着不可替代的作用。通过数字式地质图生产模式的推行,可以使反映新认识、新成果的新数据得以及时输入数据库并与原有的数据资源融为一体,既能以常规纸图的形式输出,也能以数字产品的形式输出,必要时还能根据用户的要求以非标准的专用产品形式输出。GIS的出现及其在地学领域应用的深入,使地质图作为地学研究的基础图件,正在告别纸质时代,进入数字化时代(姜作勤等,2001;王永生,2011)。

二、应用范围及应用实例

在国际上,美国、英国等国在20世纪80年代开始进行国家空间数据库的建设。1992年,美国国会通过了《国家地质填图法案》,要求开发一个国家地质数据库(NGMDB),该数据库涵盖了地质学、地球物理学、地球化学、地质年代学和古生物学等地质领域。从1997年起,美国地质调查局(USGS)和宇航局(NASA)建立了全国统一的分类标准和数据标准,并开始进行地质图的数字化工作。至今已完成了占国土面积一半以上区域的地质数据数字化工作,并建立了数据库。

在国际上,对1∶100万国际分幅地质图编制与更新工作非常重视。俄罗斯从1999 年正式开始第三版(第三代)1∶100 万国家地质图系列编制和出版工作,并且专门制定了《俄罗斯联邦1∶100 万国家地质图系列编制和出版规范》,英国、法国、南非、印度、蒙古、朝鲜等也编制出版了全国1∶100万地质图件或专业图件,美国和加拿大编制出版了部分地区1∶100万地质图件或专业图件,意大利在2003年新出版了第五版1∶100万意大利地质图。

巴西1∶100万地质图由46幅按国际标准分幅的地质图幅拼接而成。这些图幅组成了数字地质信息库,通过地质信息系统来操作管理。这些地质图数据是在野外工作、卫星图像解译、采样、同位素测年等工作基础上,通过对数据的编辑、分析、综合以及说明获得的。资料截止于2003年年底,由巴西地质调查局完成。他们出版了41张包含46幅地质图幅的电子光盘。

在巴西1∶100万国际分幅地质图的基础上,南美地质编图委员进行了南美洲1∶100万地质及矿产资源图的编制工作。南美洲1∶100万地质及矿产资源图由92幅标准图幅组成,其中包括了巴西的46幅。阿根廷、巴西和乌拉圭地质调查局在修正更新了1∶100万地质底图并结合了航天TDM雷达图像,共同完成了该项工作。

印度地质调查局在20世纪70~80年代编制了一套1∶100万地质图集,包括了28个图幅。近年来又陆续编制了AraValli地区1∶100万岩石层位图,Kolar Schist Belt 1∶100万综合地球物理及地质图,Madhya Pradest 1∶100万地质矿产图(2幅),Chhattisgarh1∶100万地质矿产图,喜马拉雅1∶100 万地质图(45 幅),印度及周边地区1∶100 万地震构造图(42幅)。

目前,“planet earth”在2007~2009年的International Year计划中提出了“透明地球”方案,并已经开始着手实施,目的在于提供不同比例尺的动态的、可以交互操作的覆盖世界范围的数字地质图。该计划拟采用双重结构来操作。第一层由UNESCO、IYPE、IUGS、CGMW、ISCGM、ICOGS组成的执行委员会来负责。第二层由各参与国家、调查机构和组织来运作。

该计划已经确定了由3个部分组成,这3个部分的图层都可以通过像Google Earth那样的动态地图浏览器被广大用户应用。前两个部分是为更大比例尺图层服务的介绍性图层,由CGMW提供:第一层(“25 G”)建立在GCMW世界1∶2500万地质图基础上;第二层(“5 G”)建立在大陆和大洋1∶500万地质图基础上。这两个图层将根据简单的图例在地质内容上进行相互协调。第三层“1 M”由英国地质调查局(BGS)开始进行,又被称为“One Geology”计划,这个图层是由各参与国地质调查局提供的1∶100 万地质图组成的。不同地质数据间的重叠和不连续问题将由GeosciML(计算机图形接口数据模型及编码)软件来解决。同时,这些地质数据是动态的,可以随时进行更新。由英国地质调查局(BGS)发起并于2007年3 月12 日~16 日在Brighton召开了会议讨论并正式启动该计划。

三、资料来源

姜作勤,张明华.2001.野外地质数据采集信息化所涉及的主要技术及其进展.中国地质,28(2):36~42

王永生.2011.地质资料信息服务集群化产业化政策研究.中国地质大学(北京)博士学位论文

大数据下的地质资料信息存储架构设计

颉贵琴 胡晓琴

(甘肃省国土资源信息中心)

摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。

关键词 大数据 地质资料 存储 NoSQL 双数据库

0 引言

新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。

目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。

而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。

1 工作现状

1.1 国内外地质资料信息的存储现状

在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。

目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。

1.2 大数据的存储架构介绍

大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。

2 大数据下的地质资料信息存储架构设计

根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。

为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。

整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。

每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。

在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。

由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。

图1 大数据下的地质资料信息存储架构框图

2.1 用户管理层

用户管理层根据权限范围,分为多层(本文以3层为例)。

位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。

用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。

与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。

下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。

同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。

2.2 MySQL和NoSQL的融合

MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。

图2 数据库管理器模型

服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。

两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。

2.3 系统的存储和检索模式

在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。

在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。

2.4 安全性设计

地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。

数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。

3 结语

提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。

参考文献

[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.

[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.

[3]黄

,易晓东,李姗姗,等.面向高性能计算机的海量数据处理平台实现与评测[J].计算机研究与发展,2012,49(Suppl):357~361.

❽ 地级市地质资料数据中心建设框架初步研究—以黄石市为例

刘忠明1徐波1姚燕1倪宇飞2徐旭东2赵婷2

(1.湖北省地质科学研究所;2.黄石市国土资源局)

摘 要地级市地质资料数据中心建设是实现地质资料管理由省级向地市级延伸的基础。数据中心建设可成立地级市

地质资料数据中心建设小组,下设中心建设筹备小组、中心基建小组和技术应用小组,各司其职,开展相关工作。中

心建设技术路线是:中心建设方案制订→中心基础设施和软硬件建设→中心地质资料管理→信息共享与服务。建立黄

石市地质资料数据中心,充分挖掘地质资料及其信息的潜在经济价值,对于创新服务机制、提高服务水平和服务质量

具有十分重要的意义。

关键词地级市地质资料数据中心建设

0 引言

2006年国务院在《关于加强地质工作的决定》中明确要求:“建立健全地质资料信息共享和社会化服务体系,加快利用现代信息技术,建设国家地质资料数据中心和全球矿产资源勘查开发投资环境信息服务系统。”2009年湖北省启动了《黄石市城区地质资料信息服务集群化和产业化试点工作》项目,其中目的之一是探讨和研究省级地质资料管理如何向地级市延伸。经过三年多的工作,项目组提交了《地级市地质资料数据中心建设指南》和《黄石市地质资料数据中心建设方案》。作者在这些成果的基础上,探讨了地级市地质资料数据中心的建设框架。黄石市是一个矿业城市[1-3],矿业发达,矿政管理任务繁重,矿山环境恢复与治理工作压力巨大。如何实现黄石市地方经济的成功转型,保持矿产资源与城市环境的可持续协调发展,建立地质资料数据中心、充分挖掘地质资料的潜在价值是必经之路。

1 建设目标、原则与中心职能

1.1 建设目标

中心建设总体目标是依托地级市地质资料管理服务系统,开展地质资料集群,实现地质资料信息的平台管理,建立、更新不同类型的数据库,为城市建设、矿政管理和宏观决策提供技术支撑,开发地质资料信息服务产品,实现地质资料信息共享与服务,将地质资料优势转化为经济优势,促进地方经济可持续发展。

1.2 建设原则

中心建设原则是在建设中心大楼和在进行系统的技术设计时,应充分考虑各地级市城市地质资料档案管理、地质资料基本特征,结合各城市地质工作的社会化实际需要,采用数据库建设、现代软件工程等设计思想和设计方法,遵循实用性、可操作性、前瞻性、标准化、可视化、网络化、智能化、集群化、可维护性和开放性等原则。其中实用性要求中心大楼建设应考虑实用性,能储存管理成果地质资料、实物地质资料和原始地质资料,满足矿政的平台管理需要,软硬件建设与地方电子政务系统相结合。数据库和软件系统平台设计必须最大限度地满足不同用户对系统的需求,系统功能齐全、经济实惠、操作简单、快捷方便。

1.3 中心职能

地级市地质资料数据中心隶属于市国土资源局,由市国土资源局和市政府办公室双重领导。

地级市地质资料数据中心具有管理、组织协调和服务职责。

管理职责:地质资料汇交管理、资料登记、数据管理、系统管理与维护、设备管理、软件管理、人员管理、人才培养计划管理、涉密管理、合同管理、安全管理、产品管理、资金管理、技术管理、价格申报等。

组织协调职责:组织数据、数据更新,聘请专家,协调技术支撑单位工作。组织会议,组织社会化服务产品。与平级、上级和全国地质资料数据中心加强联系。

服务职责:研发或委托研发地质资料信息社会化服务产品。为政府和用户提供地质资料信息社会化服务产品。

1.4 中心任务

地级市地质资料数据中心的主要任务是系统维护、项目研究、产品研发和产品服务。系统维护、项目研究是基础,产品研发是关键,产品服务是目的。

系统维护:做好地质资料数据的汇交收集、登记、管理与借阅工作。不断补充数据,完善系统功能。维护系统的稳定和安全。做好地质资料数据的保密安全工作。加强软件系统的集群化和最优化组合试点。

项目研究:开展地质资料集群化产业化项目研究和相关专题研究。

产品研发:在地质资料集群化产业化项目研究同时或之后,研发地质资料信息社会化服务产品、服务形式,为产品服务提供产品库。

产品服务:根据用户需要,从产品库中提取产品供用户使用。做好产品宣传(片)和需求调研工作。

2 总体框架

2.1 中心建设

由市政府出面,组织成立黄石市地质资料数据中心建设小组,下设中心建设筹备小组、中心基建小组和技术应用小组,各司其职,开展相关工作(图1)。

图1 黄石市地质资料数据中心建设构架

在地级市地质资料数据中心内部划分相关工作室,分工协作。内部成立办公室、项目研究室、产品研发室、财务室、产品服务室。负责地质资料的汇交、管理与服务工作,负责与地质资料信息服务集群化产业化工作的事业单位和软件公司之间的业务联系。以地质资料信息服务集群化产业化工作为抓手,完善日常管理工作,逐步建立市地质资料数据中心。

2.2 管理服务系统建设

根据市地质资料数据中心建设目标和任务,设计、建设好地级市地质资料管理服务系统。地级市地质资料管理服务系统由功能系统、分类系统和支撑系统三部分组成。

2.2.1 功能系统

黄石市地质资料管理服务系统主要分为:资料服务、矿政服务、城市建设服务和系统维护四部分(图2),体现出市地质资料数据中心的主要工作和职能,每个部分都具有数据组织、数据录入、数据检查、数据维护、信息查询、统计分析、编辑等功能。

图 2 黄石市地质资料管理服务系统构架

资料集群:一是对原始地质资料、实物地质资料和成果地质资料的集群,方法有汇交、收集、资料共享等;二是地质图书资料、地质标准规范、地质工具书等的集群,方法有收集、购置、资料共享等;三是地质项目、地质成果的集群;四是其他数据库、多媒体等的集成。

资料管理:建立地质资料目录数据库和原始地质资料数据库,实现地质资料目录查询和地质资料电子浏览功能。完善地质资料平台借阅服务管理及其功能。

图书管理:分为地质论文、专著、教材、专集、报刊、科普、其他等部分,分别建立地质图书数据库,便于查询和浏览。

数据管理:主要分为基础地理信息数据库、地质专业数据库、地质图形库管理三部分。建立、完善这些数据库,实现数据统计分析、自动生成、自动成图等功能。

矿政管理:主要涉及规划管理、地矿单位资质管理、地质项目管理、地质资料管理、矿产管理、地质环境管理、矿业权管理、地质信息管理等。完善一张图管矿专题数据库,实现矿政管理的可视化。

信息共享与服务:提供原始数据库、成果数据库和模型库等地质产品服务。其中成果数据库主要有项目库、专项库、图形库、专业数据库等。黄石市板岩山危岩体治理工程项目数据库是一个项目库,黄石市矿业权规划数据库、黄石市一张图管矿是专项库。

2.2.2 分类系统

主要对地质资料、地质数据、地质图、地质信息化服务产品进行分类管理。黄石市地质资料分为11大类、100 多个数据类型。

2.2.3 支撑系统

主要有:集群体系、数据中心、专家系统、涉密管理、程序管理、协议管理、合同管理、资金管理、法律法规、标准规范等。通过行政、技术等服务工作,为管理系统提供强有力的保障。

2.3 数据库建设

数据库建设流程是:地质数据需求调查→地质数据要素全面清理→数据库设计→试点数据录入建库与调试→数据录入建库→数据更新、维护。

数据库设计,要求反映的地质要素要全,由空间数据和属性数据组成,结构合理,操作性强。待数据库建设方法成熟后,进行大规模数据录入,正式建立数据库。

2.4 地市级地质资料汇交机制的研究

如何将全国地质资料馆和各省(市、区)地质资料馆的地质资料汇交与收集的规章制度、管理办法和实施细则延伸到市县级地质资料馆,需要进行探索和实践,最终建立一套完整的汇交机制,进而建立地市级地质资料数据中心。

第一,成立地级市地质资料数据中心,建立并完善机构设置,起草并实施《黄石市地质资料汇交管理办法和实施细则》。

第二,建立以汇交为主的地质资料集群机制。

第三,建立地级市地质资料汇交网络系统。

第四,加强地质资料汇交验收力度。

3 中心建设方法

中心建设技术路线是:中心建设方案制订→中心基础设施和软硬件建设→中心地质资料管理→信息共享与服务。

中心建设方案制订的基本方法:以地质资料信息服务集群化产业化项目为支点,根据地级市地质资料中心建设指南,起草中心建设方案。在此基础上,进行问卷设计及调查,参观考察,征求意见,数易其稿,经过评审认证,最终形成方案报批稿。

中心基础设施和软硬件建设:包括地质资料库建设(原始、实物、成果地质资料)、硬件建设、软件建设、系统建设、数据库建设、网络通讯建设和电子政务建设。

中心地质资料管理:加强地质资料保管员的责任意识和保密意识,提高业务水平。根据地质资料管理条例和实施细则,建立并完善地级市地质资料管理办法。

中心地质资料信息共享与服务:研究和实施地质资料集群机制,实现地质资料信息共享,扩宽地质资料信息社会化服务产品领域,提升产品质量。

4 中心建设意义

长期以来,黄石市地质资料分散、综合研究程度不够、数字化信息化程度不高,严重制约了地质资料服务水平、服务质量和服务效益。建立黄石市地质资料数据中心,充分挖掘地质资料及其信息的潜在经济价值,对于创新服务机制、提高服务水平和服务质量,具有十分重要的意义;对于减少建设项目重复投资,避免、减少投资风险,实现矿产资源物尽其用,矿山环境恢复与治理,也具有现实意义。

在黄石市地质资料数据中心的统一框架下,不断完善湖北省黄石市地质资料管理服务系统。依据工作方案,落实黄石市地质资料数据中心机构、人员编制、经费来源。起草技术规范、标准、指南、管理制度、管理办法、实施细则等,力争成为矿业城市地质资料数据中心建设的领头羊,为培训和普及全国地市级地质资料数据中心建设提供技术支撑和管理经验。

目前,全国地质资料数据中心和部分省(市、区)地质资料数据中心正在建设之中,实现地质资料管理向地级市延伸是必然趋势。地质资料信息服务集群化产业化试点工作项目组也在积极探索建立地级市地质资料数据中心的方式和方法。通过地方行政主管部门、国土资源主管部门、地质资料信息服务集群化产业化项目组等的共同努力,一定会建设好地级市地质资料数据中心,为城市建设和城市发展提供强有力的技术支撑。

参 考 文 献

[1] 刘忠明等 . 湖北省黄石市矿业发展史研究 [J]. 华南地质与矿产,2008,93(1):65 ~ 69.

[2] 刘忠明等 . 黄石市矿业遗迹基本类型、特征及其开发利用建议 [J]. 华南地质与矿产,2009,97(1):72 ~ 81.

[3] 韩培光等 . 黄石市现代典型矿业遗迹基本特征及开发建议 [J]. 资源环境与工程,2008,22(3):377 ~ 386.

❾ 地下水三维地质建模的技术流程

(一)三维实体模型构建流程

三维实体模型,也就是三维结构模型,它主要反映各地质体的几何形状及空间组合。三维实体模型的构建,需要在收集整理原始数据的基础上,按照一定的顺序编辑制作不同的地质体图元,即地表、断层、地层、透镜体,最后生成符合实际情况的地质体。地质体生成后,就可以进行可视化操作、输出模型剖切图、对地质体进行分析研究等工作(图3—33)。在建模过程中始终要进行质量控制。

在建模区,需要收集和整理的资料已经在地下水三维地质建模数据需求与组织部分做了详细的介绍,这里不再重复。由于在建模中涉及的数据资料种类不但繁多,如:钻孔数据、剖面数据、地质平面图、等值线数据等,而且数据量也十分巨大。因此,进行这些海量数据的分类、整理、更新和管理是一项非常复杂的工作,必须运用数据库技术才能完成,这就是要建立空间信息数据库的原因。

图3—33 地下水三维地质建模技术流程图

模型构建,首先要设置工区范围,也就是要读入用户定义好的工区边界数据文件,设置工区高程的范围,建立模型的显示工区。接着构建三维地表模型,也就是读入地表地形等值线或高程离散点数据等,进行三角剖分生成地表网格,地表网格生成后,能够显示地表网格的属性信息。然后导入钻孔数据和剖面数据,在三维空间中对这些数据进行交互式编辑,生成地层、断层、透镜体等各种地质体。将生成的三维地表模型、各种三维地质体模型进行组合叠加,设置好各图元的属性及岩性后,地质体三维模型就建立起来了。三维模型生成之后,就可以对模型进行各种可视化操作,如:旋转、放缩、单面剖切、折线剖切、组合剖切、栅状剖切、挖掘、漫游等,方便用户从各个角度认识模型,以利于后期的分析研究。对于剖切模型后得到的各种剖面图件,或是利用模型生成的各种平面图件(如等值线图、等厚度图或某一深度处的水平剖切图)以及利用模型生成的各种三维图形,可以按比例、所见即所得以及位图等多种形式打印输出。

在实体模型的构建中,不可避免的会出现各种误差,包括源误差、处理误差和应用误差等三种类型。

源误差是指数据采集和录入中产生的误差,包括:

(1)遥感数据误差:由摄影平台,传感器的结构及稳定性,信号数字化,光电转换,分辨率等引起的误差;

(2)测量数据误差:由测量人员,仪器,环境等引起的误差;

(3)属性记录误差:由数据模型化,数据库操作,属性数据的录入等引起的误差;

(4)制图误差:由展绘控制点、编绘、清绘、综合、制印、套色等引起的误差;

(5)数字化误差:纸张变形,比例尺和地图投影,数字化仪的精度,操作员的技能,采样点密度等引起的误差。

处理误差是指数据录入后进行数据处理过程中产生的误差,包括几何改正、坐标变换和比例尺变换、几何数据的编辑、属性数据的编辑、空间分析、图形化简(数据压缩和曲线光滑)、数据格式转换、地形数据模型化、计算机截断等造成的误差。

应用误差是指数据被使用过程中出现的误差,包括数据的完备程度、拓扑关系的正确与否等所引起的误差。

对以上误差必须进行控制,也就是要进行质量控制,否则,所构建的模型将错误太多,不能用于生产实践。

对于源误差,可以按照这些误差的限制标准进行质控制;处理误差一般都很小,尤其是与源误差相比几乎可以忽略不计,其中除了截断误差与计算机字长有关外,其余的处理误差都是按一定的数学模型进行的,这些误差也是很好控制的;应用误差可以用叠置分析的方法进行控制。

(二)属性模型构建流程

属性模型是反映地质体内某一类物化属性特征值在三维空间中分布情况的立体模型。属性模型建模的原始数据是动态变化的,随着数据的更新,所建立的属性模型也产生变化。

属性模型是以水文地质层为基本建模单位来建立,在空间分布上将受到水文地质层的制约。两个水文地质层之间的属性模型属于同一个时代,在进行建模时以两个相邻层为制约条件划分等时面。

地质专家和工作人员可以通过可视化手段观察属性模型的详细情况,也可以将三维属性模型和相应的三维结构模型相结合来考察空间岩性、地下水、地下水污染和物探成果(物性)等属性的分布情况。

属性模型建模过程和可视化流程图如图3—34所示。

第一步,导入原始数据,包括水文地质剖面、钻孔和其他方式输入的属性数据。

图3—34 属性模型建模流程

第二步,如果有剖面数据,对剖面的岩性区域进行三角形剖分,同时确定每个三角形的属性。

第三步,在属性分布的趋势面内建立足够密的等时面,该等时面代表同一历史时期属性的分布情况。

第四步,每个等时面与原始数据求交,保证将原始属性分配到每个等时面上。

第五步,按照空间分布,将等时面上的属性信息映射到立方体栅格数据上,作为立方体栅格插值的初始数据。

第六步,根据地质因素分析,判断属性模型是否需要沉积相建模,如果需要,则划分沉积区域并设置椭圆。

第七步,对空间立方体栅格数据进行插值,如果设置了沉积相椭圆,则考虑各项异性插值。

第八步,将带有属性信息的栅格数据存储在服务器上,以便使用。为了提高速度,在栅格数据量很大的情况下,可以对数据进行分块存储。

第九步,利用各种可视化手段对属性分布情况进行观察。

第十步,如果用户获得了新的数据,系统重复以上步骤自动重新计算,快速地重建模型,原有的数据不用再重新输入。

❿ 什么是地质数据库

就是地质类知道的数据库,有各种比例尺的地质图空间数据库、同位素地质测年数据库、重砂数据库、水文地质图数据库、地质资料管理数据库等等,只要内容是地质资料的数据库都是地质数据库的一种。

阅读全文

与城市地质三维大数据库相关的资料

热点内容
哪里在线看小电影 浏览:166
单击应用程序的解释 浏览:999
韩国电影从楼上小洞看下面美女0 浏览:887
苹果A1622什么版本 浏览:814
linux查看目录所有文件大小 浏览:674
拿快递露奶电影 浏览:38
登山的目的中文2电影中文字 浏览:887
国外男男大尺度电影 浏览:902
有天资榜的小说叶凌天 浏览:407
团鬼六最新电影 浏览:266
苹果6设置id怎么设置密码 浏览:278
一个小孩被绑架的搞笑电影叫什么 浏览:868
一龙二凤小说 浏览:358
电影不卡免费在线看 浏览:797
妻子是美容院的老板韩国 浏览:641
win10激活cdkey 浏览:861
不要网看电影' 浏览:103
安卓文件夹播放 浏览:402
一部韩国电影讲的四对恋人有一对在电影院 浏览:812
微信语音消息怎么保存在哪里 浏览:462

友情链接