導航:首頁 > 網路數據 > 分層分組網路技術解讀

分層分組網路技術解讀

發布時間:2021-12-05 04:30:27

❶ 計算機網路為什麼要採用分層的體系結構

層次清晰,可擴展性能,增強穩定性等。在對網路分層以後可以將問題細化,使得問題更加容易分析。把一個大的系統分拆成小的體系後,便於在各個層次上制定標准,從而實現層與層之間的標准介面,從而實現各類網路硬體和軟體的通信。分層以後,某一層的改動不會影響到其他的層,便於開發。
獨立性強——上層只需了解下層通過層間介面提供什麼服務-黑箱方法;
適應性好——只要服務和介面不變,層內實現方法可任意改變;
使設計人員能專心設計和開發所關心的功能模塊,功能易於優化、實現;
結構清晰,易於管理和維護;
良好的標准化;

❷ 計算機網路中分組交換,我知道分組是把數據分成小塊傳輸,那交換指什麼(通俗點講,謝謝)

網路中的分組交換就是把數據分為小的數據包,然後在其前面加上IP地址及MAC地址等信息放在網路上傳輸。這樣很多不同地址的數據包就可以共用一條鏈路傳輸了。

❸ 計算機網路分層體系結構包含哪兩方面的含義

在OSI出現之前,計算機網路中存在眾多的體系結構,其中以IBM公司的SNA(系統網路體系結構)和DEC公司的DNA(Digital Network Architecture)數字網路體系結構最為著名。為了解決不同體系結構的網路的互聯問題,國際標准化組織ISO(注意不要與OSI搞混))於1981年制定了開放系統互連參考模型(Open System Interconnection Reference Model,OSI/RM)。這個模型把網路通信的工作分為7層,它們由低到高分別是物理層(Physical Layer),數據鏈路層(Data Link Layer),網路層(Network Layer),傳輸層(Transport Layer),會話層(Session Layer),表示層(Presen tation Layer)和應用層(Application Layer)。第一層到第三層屬於OSI參考模型的低三層,負責創建網路通信連接的鏈路;第四層到第七層為OSI參考模型的高四層,具體負責端到端的數據通信。每層完成一定的功能,每層都直接為其上層提供服務,並且所有層次都互相支持,而網路通信則可以自上而下(在發送端)或者自下而上(在接收端)雙向進行。當然並不是每一通信都需要經過OSI的全部七層,有的甚至只需要雙方對應的某一層即可。物理介面之間的轉接,以及中繼器與中繼器之間的連接就只需在物理層中進行即可;而路由器與路由器之間的連接則只需經過網路層以下的三層即可。總的來說,雙方的通信是在對等層次上進行的,不能在不對稱層次上進行通信。OSI 標准制定過程中採用的方法是將整個龐大而復雜的問題劃分為若干個容易處理的小問題,這就是分層的體系結構辦法。在OSI中,採用了三級抽象,既體系結構,服務定義,協議規格說明。ISO將整個通信功能劃分為七個層次,劃分層次的原則是:1、網中各節點都有相同的層次。2、不同節點的同等層次具有相同的功能。3、同一節點能相鄰層之間通過介面通信。4、每一層使用下層提供的服務,並向其上層提供服務。5、不同節點的同等層按照協議實現對等層之間的通信。第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。在這一層,數據的單位稱為比特(bit)。屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。 數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。 第三層是網路層(Network layer)在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。 如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據

❹ 分組交換、計算機網路的定義

我很負責任的告訴你,你的說法是對的。嚴格來說你看的PPT是錯的,至少說PPT有歧義。PPT想表達的意思其實是在各個物理網路中二層幀頭需要重新封裝,他說「IP封裝」是指如何用MAC幀頭對IP數據報封裝,所以他這里有點歧義,如你所說:MAC幀的源地址和目的地址是根據路由器來的,所以每次經過一個路由器這兩個地址都會進行更新。加上,他經過路由器1之後,第二個「幀頭1」是錯的,經過路由器的幀頭不可能不變。

❺ 計算機網路系統分層結構的優點是什麼

1、分層結構將應用系統正交地劃分為若干層,每一層只解決問題的一部分,通過各層的協作提供整體解決方案。大的問題被分解為一系列相對獨立的子問題,局部化在每一層中,這樣就有效的降低了單個問題的規模和復雜度,實現了復雜系統的第一步也是最為關鍵的一步分解。

2、分層結構具有良好的可擴展性,為應用系統的演化增長提供了一個靈活的框架,具有良好的可擴展性。增加新的功能時,無須對現有的代碼做修改,業務邏輯可以得到最大限度的重用。同時,層與層之間可以方便地插入新的層來擴展應用。

3、分層架構易於維護。在對系統進行分解後,不同的功能被封裝在不同的層中,層與層之間的耦合顯著降低。因此在修改某個層的代碼時,只要不涉及層與層之間的介面,就不會對其他層造成嚴重影響。

(5)分層分組網路技術解讀擴展閱讀:

體系結構:

計算機網路是一個復雜的具有綜合性技術的系統,為了允許不同系統實體互連和互操作,不同系統的實體在通信時都必須遵從相互均能接受的規則,這些規則的集合稱為協議(Protocol)。

系統指計算機、終端和各種設備。實體指各種應用程序文件傳輸軟體,資料庫管理系統,電子郵件系統等。互連指不同計算機能夠通過通信子網互相連接起來進行數據通信。

互操作指不同的用戶能夠在通過通信子網連接的計算機上,使用相同的命令或操作,使用其它計算機中的資源與信息,就如同使用本地資源與信息一樣。計算機網路體系結構為不同的計算機之間互連和互操作提供相應的規范和標准。

❻ 計算機網路為什麼要分層

主要就將一個復雜的計算機網路分開管理,各個層實行相應的功能,便於管理,和標準的實行。因為有的只是做某一部分的介面等,相當於模塊化設計,便於添加和刪減,實際上是很復雜的不能很清楚的區分,只是書本的定義,對於理解有好處
分層的理由
·將網路的通信過程劃分為小一些、簡單一些的部件,因此有助於各個部件的開發、設計和故障排除。
·通過網路組件的標准化,允許多個供應商進行開發。
·通過定義在模型的每一層實現什麼功能,鼓勵產業的標准化。
·允許各種類型的網路硬體和軟體相互通信。
·防止對某一層所做的改動影響到其他的層,這樣就有利於開發。
分層的原則
1.各個層之間有清晰的邊界,便於理解;
2.每個層實現特定的功能;
3.層次的劃分有利於國際標准協議的制定;
4.層的數目應該足夠多,以避免各個層功能重復。

❼ 簡述為什麼要對計算機網路分層以及分層的一般原則

計算機網路分層,是為了從概念上區分,從具體到抽象,是為了方便工業化生產,建立了OSI開放式系統互聯參考模型。物理層、數據鏈路層,網路層,傳輸層,會話層,表示層,應用層,一層比一層抽象。

❽ 闡述計算機網路體系結構分層的優缺點,以及這種層次劃分的體系結構思想在工作生活中的應用。

計算機網路系統是獨立的計算機通過已有通信系統連接形成的,其功能是實現計算機的遠程訪問和資源共享。因此,計算機網路的問題主要是解決異地獨立工作的計算機之間如何實現正確、可靠的通信,計算機網路分層體系結構模型正是為解決計算機網路的這一關鍵問題而設計的。
分層的原則
計算機網路體系結構的分層思想主要遵循以下幾點原則:
1.功能分工的原則:即每一層的劃分都應有它自己明確的與其他層不同的基本 [被屏蔽廣告]功能。
2.隔離穩定的原則:即層與層的結構要相對獨立和相互隔離,從而使某一層內容或結構的變化對其他層的影響小,各層的功能、結構相對穩定。
3.分支擴張的原則:即公共部分與可分支部分劃分在不同層,這樣有利於分支部分的靈活擴充和公共部分的相對穩定,減少結構上的重復。
4.方便實現的原則:即方便標准化的技術實現。
層次的劃分
計算機網路是計算機的互連,它的基本功能是網路通信。網路通信根據網路系統不同的拓撲結構可歸納為兩種基本方式:第一種為相鄰結點之間通過直達通路的通信,稱為點到點通信;第二種為不相鄰結點之間通過中間結點鏈接起來形成間接可達通路的通信,稱為端到端通信。很顯然,點到點通信是端到端通信的基礎,端到端通信是點到點通信的延伸。
點到點通信時,在兩台計算機上必須要有相應的通信軟體。這種通信軟體除了與各自操作管理系統介面外,還應有兩個介面界面:一個向上,也就是向用戶應用的界面;一個向下,也就是向通信的界面。這樣通信軟體的設計就自然劃分為兩個相對獨立的模塊,形成用戶服務層US和通信服務層CS兩個基本層次體系。
端到端通信鏈路是把若干點到點的通信線路通過中間結點鏈接起來而形成的,因此,要實現端到端的通信,除了要依靠各自相鄰結點間點到點通信聯接的正確可靠外,還要解決兩個問題:第一,在中間結點上要具有路由轉接功能,即源結點的報文可通過中間結點的路由轉發,形成一條到達目標結點的端到端的鏈路;第二,在端結點上要具有啟動、建立和維護這條端到端鏈路的功能。啟動和建立鏈路是指發送端結點與接收端結點在正式通信前雙方進行的通信,以建立端到端鏈路的過程。維護鏈路是指在端到端鏈路通信過程中對差錯或流量控制等問題的處理。
因此在網路端到端通信的環境中,需要在通信服務層與應用服務層之間增加一個新的層次來專門處理網路端到端的正確可靠的通信問題,稱為網路服務層NS。
對於通信服務層,它的基本功能是實現相鄰計算機結點之間的點到點通信,它一般要經過兩個步驟:第一步,發送端把幀大小的數據塊從內存發送到網卡上去;第二步,由網卡將數據以位串形式發送到物理通信線路上去。在接收端執行相反的過程。對應這兩步不同的操作過程,通信服務層進一步劃分為數據鏈路層和物理層。
對於網路服務層,它的功能也由兩部分組成:一是建立、維護和管理端到端鏈路的功能;二是進行路由選擇的功能。端到端通信鏈路的建立、維護和管理功能又可分為兩個側面,一是與它下面網路層有關的鏈路建立管理功能,另一是與它上面端用戶啟動鏈路並建立與使用鏈路通信的有關管理功能。對應這三部分功能,網路服務層劃分為三個層次:會晤層、傳輸層和網路層,分別處理端到端鏈路中與高層用戶有關的問題,端到端鏈路通信中網路層以下實際鏈路聯接過程有關的問題,以及路由選擇的問題。
對於用戶服務層,它的功能主要是處理網路用戶介面的應用請求和服務。考慮到高層用戶介面要求支持多用戶、多種應用功能,以及可能是異種機、異種OS應用環境的實際情況,分出一層作為支持不同網路具體應用的用戶服務,取名為應用層。分出另一層用以實現為所有應用或多種應用都需要解決的某些共同的用戶服務要求,取名為表示層。
結論
綜上所述,計算機網路體系結構分為相對獨立的七層:應用層、表示層、會晤層、傳輸層、網路層、鏈路層、物理層。這樣,一個復雜而龐大的問題就簡化為了幾個易研究、處理的相對獨立的局部問題。

❾ 計算機網路的分層體系結構

第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。
在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。
數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
在這一層,數據的單位稱為幀(frame)。
數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。

第三層是網路層(Network layer)

在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。

如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。
在這一層,數據的單位稱為數據包(packet)。
網路層協議的代表包括:IP、IPX、RIP、OSPF等。

第四層是處理信息的傳輸層(Transport layer)。第4層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段(segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中傳輸層對上層屏蔽了通信傳輸系統的具體細節。
傳輸層協議的代表包括:TCP、UDP、SPX等。

第五層是會話層(Session layer)

這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。

第六層是表示層(Presentation layer)

這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。

第七層應用層(Application layer),應用層為操作系統或網路應用程序提供訪問網路服務的介面。
應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。

❿ 為什麼要對計算機網路分層以及分層的一般原則。

分層的理由
·將網路的通信過程劃分為小一些、簡單一些的部件,因此有助於各個部件的開發、設專計和故障排除屬。
·通過網路組件的標准化,允許多個供應商進行開發。
·通過定義在模型的每一層實現什麼功能,鼓勵產業的標准化。
·允許各種類型的網路硬體和軟體相互通信。
·防止對某一層所做的改動影響到其他的層,這樣就有利於開發。
分層的原則
1.各個層之間有清晰的邊界,便於理解;
2.每個層實現特定的功能;
3.層次的劃分有利於國際標准協議的制定;
4.層的數目應該足夠多,以避免各個層功能重復

閱讀全文

與分層分組網路技術解讀相關的資料

熱點內容
換新erp系統舊數據怎麼錄 瀏覽:33
電腦文件屬性打不開 瀏覽:64
word文件信息兼容模式 瀏覽:656
iphonewarranty 瀏覽:742
婁底營銷網路推廣途徑有哪些 瀏覽:86
mongodb數據文件丟失 瀏覽:940
iphone4使用大全 瀏覽:330
美萍軟體資料庫在哪個文件夾 瀏覽:668
51虛擬機的數據文件路徑 瀏覽:931
java如何鎖定sql表 瀏覽:272
全民飛機大戰黃金升級費用 瀏覽:302
臨床科室文件管理你知道多少 瀏覽:814
js訪問excel模板文件 瀏覽:766
智能互動編程是什麼 瀏覽:320
大學生編程學什麼語言 瀏覽:101
自考編程專業是什麼 瀏覽:804
大數據熱工 瀏覽:384
jstable行 瀏覽:421
js獲取標簽內容 瀏覽:519
潘多拉文件是什麼意思 瀏覽:636

友情鏈接