Ⅰ 大數據測試工程師需要具備哪些技能
1、測試基本知識
想成為大數據測試工程師之前,有些測試必備的技能,比如軟體測試執行提出了我們開展軟體測試的執行活動所需要涉及的執行過程以及相關策略;同時了解常用德測試活動中的經驗之談,理論知識的梳理和基本的測試技巧掌握。
2、linux及環境搭建 、Docker容器實現分布式虛擬化技巧
一個成熟的數據從業者應該懂得靈活的運用數據尋找,獲取,安裝,Debug,分享,團隊合作,Linux是知名的開源系統,在這個系統下環境的配置將變得非常容易和透明。Linux操作系統作為常見的底層操作系統,在軟體開發、軟體測試過程中都會經常接觸和使用,很多企業的伺服器都是Linux環境的,對於測試人員而言,也都會掌握相應的Linux命令。
3、SQL和資料庫相關的技能
資料庫是另外一個比較重要的部分,想像一下你不可能一直使用Excel去處理數據,畢竟超過十萬行的數據用Excel就比較吃力了。這個時候SQL就是必須要用的,可以說這個是一個核心技能。有的人可能會說SQL非常簡單,但是當你實際應用的時候你會發現你在學校學的那些簡單Query完全就跟不上需求了。
4、 Python/java語言
先說一下Python, Python是一種萬能的語言,適用性非常強,除了數據分析還能夠做很多的事情,比如編寫程序,網站開發,深度學習等等。如果你決定使用Python,那麼你需要了解的點主要是各種包的搜索和調用,函數的編寫和嵌套,數據類型的把握(list, tuple, series, dict),條件判斷,循環迭代等等。
5、性能測試、框架開發的技能掌握
這個也是成為大數據測試工程師前,你必須要掌握得部分。在了解性能測試各方面的知識和經驗的同時,培養自己的獨立思考和解決問題的能力,掌握軟體性能測試核心技術、工具使用以及項目實戰技巧。
Ⅱ 大數據工程師需要掌握哪些技能
大數據技術體來系龐大,包括的知源識較多
1、學習大數據首先要學習Java基礎
Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學hadoop
2、學習大數據核心知識
Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。
3、學習大數據需要具備的能力
數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。
4、學習大數據可以應用的領域
大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛。
Ⅲ 大數據測試需要學什麼
首先是基礎階段。這一階段包括:關系型資料庫原理、操作系統原理及應用。在掌握了這些基礎知識後,會安排這些基礎課程的進階課程,即:數據結構與演算法、MYSQL資料庫應用及開發、SHELL腳本編程。在掌握了這些內容之後,大數據基礎學習階段才算是完成了。
接下來是大數據專業學習的第二階段:大數據理論及核心技術。第二階段也被分為了基礎和進階兩部分,先理解基礎知識,再進一步對知識內容做深入的了解和實踐。基礎部分包括:布式存儲技術原理與應用、分布式計算技術、HADOOP集群搭建、運維;進階內容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源碼分析、HIVE、HBASE、Mongodb、HADOOP項目實戰。
完成了這部分內容的學習,學員們就已經掌握了大數據專業大部分的知識,並具有了一定的項目經驗。但為了學員們在大數據專業有更好的發展,所學知識能更廣泛地應用到大數據相關的各個崗位,有個更長遠的發展前景。
第三階段叫做數據分析挖掘及海量數據高級處理技術。基礎部分有:PYTHON語言、機器學習演算法、FLUME+KAFKA;進階部分有:機器學習演算法庫應用、實時分析計算框架、SPARK技術、PYTHON高級語言應用、分布式爬蟲與反爬蟲技術、實時分析項目實戰、機器學習演算法項目實戰。
Ⅳ 大數據崗位需要掌握哪些技能
大數據所需技能:
1、linux
大數據集群主要建立在linux操作系統上,Linux是一套免費使用和自由傳播的回類Unix操作系統。
2、答Hadoop
Hadoop是一個能夠對大量數據進行離線分布式處理的軟體框架,運算時利用maprece對數據進行處理。
3、HDFS
HDFS是建立在多台節點上的分布式文件系統,用戶可以通過hdfs命令來操作分布式文件系統。
4、Hive
Hive是使用sql進行計算的hadoop框架,工作中常用到的部分,也是面試的重點,此部分大家將從方方面面來學習Hive的應用,任何細節都將給大家涉及到。
5、Storm實時數據處理
全面掌握Storm內部機制和原理,通過大量項目實戰,擁有完整項目開發思路和架構設計,掌握從數據採集到實時計算到數據存儲再到前台展示。
6、spark
大數據開發中最重要的部分,涵蓋了Spark生態系統的概述及其編程模型,深入內核的研究,Spark on Yarn,Spark Streaming流式計算原理與實踐,Spark SQL,Spark的多語言編程以及SparkR的原理和運行...
Ⅳ 大數據學習一般都學什麼
學習大數據首先我們要學習Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java
大家都知道Java的方向有JavaSE、JavaEE、JavaME,學習大數據要學習那個方向呢?只需要學習Java的標准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技術在大數據技術里用到的並不多,只需要了解就可以了,當然Java怎麼連接資料庫還是要知道的,像JDBC一定要掌握一下。
有同學說Hibernate或Mybites也能連接資料庫啊,為什麼不學習一下,我這里不是說學這些不好,而是說學這些可能會用你很多時間,到最後工作中也不常用,我還沒看到誰做大數據處理用到這兩個東西的,當然你的精力很充足的話,可以學學Hibernate或Mybites的原理,不要只學API,這樣可以增加你對Java操作資料庫的理解,因為這兩個技術的核心就是Java的反射加上JDBC的各種使用。
Linux
因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
Hadoop
這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
YARN是體現Hadoop平台概念的重要組件有了它大數據生態體系的其它軟體就能在hadoop上運行了,這樣就能更好利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop yarn上面就可以了。
其實把Hadoop的這些組件學明白你就能做大數據的處理了,只不過你現在還可能對"大數據"到底有多大還沒有個太清楚的概念,聽我的別糾結這個。等以後你工作了就會有很多場景遇到幾十T/幾百T大規模的數據,到時候你就不會覺得數據大真好,越大越有你頭疼的。當然別怕處理這么大規模的數據,因為這是你的價值所在,讓那些個搞Javaee的php的html5的和DBA的羨慕去吧。記住學到這里可以作為你學大數據的一個節點。
Zookeeper
這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql
我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop
這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive
這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie
既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。
Hbase
這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka
這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了。
因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark
它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
Ⅵ 想學習大數據要掌握哪些知識
學習大數據需要掌握的知識有很多,大數據也是目前非常好的工作崗位,如果你不知道大數據需要學習什麼知識,你可以去黑馬程序員社區,有學習大數據的學習大綱、視頻、工具什麼的。
Ⅶ 大數據需要學習哪些內容
大數抄據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),平台有hadoop
Ⅷ 大數據分析應該掌握哪些基礎知識
Java基礎語法
· 分支結構if/switch
· 循環結構for/while/do while
· 方法聲明和調用
· 方法重載
· 數組的使用
· 命令行參數、可變參數
IDEA
· IDEA常用設置、常用快捷鍵
· 自定義模板
· 關聯Tomcat
· Web項目案例實操
面向對象編程
· 封裝、繼承、多態、構造器、包
· 異常處理機制
· 抽象類、介面、內部類
· 常有基礎API、集合List/Set/Map
· 泛型、線程的創建和啟動
· 深入集合源碼分析、常見數據結構解析
· 線程的安全、同步和通信、IO流體系
· 反射、類的載入機制、網路編程
Java8/9/10/11新特性
· Lambda表達式、方法引用
· 構造器引用、StreamAPI
· jShell(JShell)命令
· 介面的私有方法、Optional加強
· 局部變數的類型推斷
· 更簡化的編譯運行程序等
MySQL
· DML語言、DDL語言、DCL語言
· 分組查詢、Join查詢、子查詢、Union查詢、函數
· 流程式控制制語句、事務的特點、事務的隔離級別等
JDBC
· 使用JDBC完成資料庫增刪改查操作
· 批處理的操作
· 資料庫連接池的原理及應用
· 常見資料庫連接池C3P0、DBCP、Druid等
Maven
· Maven環境搭建
· 本地倉庫&中央倉庫
· 創建Web工程
· 自動部署
· 持續繼承
· 持續部署
Linux
· VI/VIM編輯器
· 系統管理操作&遠程登錄
· 常用命令
· 軟體包管理&企業真題
Shell編程
· 自定義變數與特殊變數
· 運算符
· 條件判斷
· 流程式控制制
· 系統函數&自定義函數
· 常用工具命令
· 面試真題
Hadoop
· Hadoop生態介紹
· Hadoop運行模式
· 源碼編譯
· HDFS文件系統底層詳解
· DN&NN工作機制
· HDFS的API操作
· MapRece框架原理
· 數據壓縮
· Yarn工作機制
· MapRece案例詳解
· Hadoop參數調優
· HDFS存儲多目錄
· 多磁碟數據均衡
· LZO壓縮
· Hadoop基準測試
Zookeeper
· Zookeeper數據結果
· 內部原理
· 選舉機制
· Stat結構體
· 監聽器
· 分布式安裝部署
· API操作
· 實戰案例
· 面試真題
· 啟動停止腳本
HA+新特性
· HDFS-HA集群配置
Hive
· Hive架構原理
· 安裝部署
· 遠程連接
· 常見命令及基本數據類型
· DML數據操作
· 查詢語句
· Join&排序
· 分桶&函數
· 壓縮&存儲
· 企業級調優
· 實戰案例
· 面試真題
Flume
· Flume架構
· Agent內部原理
· 事務
· 安裝部署
· 實戰案例
· 自定義Source
· 自定義Sink
· Ganglia監控
Kafka
· 消息隊列
· Kafka架構
· 集群部署
· 命令行操作
· 工作流程分析
· 分區分配策略
· 數據寫入流程
· 存儲策略
· 高階API
· 低級API
· 攔截器
· 監控
· 高可靠性存儲
· 數據可靠性和持久性保證
· ISR機制
· Kafka壓測
· 機器數量計算
· 分區數計算
· 啟動停止腳本
DataX
· 安裝
· 原理
· 數據一致性
· 空值處理
· LZO壓縮處理
Scala
· Scala基礎入門
· 函數式編程
· 數據結構
· 面向對象編程
· 模式匹配
· 高階函數
· 特質
· 註解&類型參數
· 隱式轉換
· 高級類型
· 案例實操
Spark Core
· 安裝部署
· RDD概述
· 編程模型
· 持久化&檢查點機制
· DAG
· 運算元詳解
· RDD編程進階
· 累加器&廣播變數
Spark SQL
· SparkSQL
· DataFrame
· DataSet
· 自定義UDF&UDAF函數
Spark Streaming
· SparkStreaming
· 背壓機制原理
· Receiver和Direct模式原理
· Window原理及案例實操
· 7x24 不間斷運行&性能考量
Spark內核&優化
· 內核源碼詳解
· 優化詳解
Hbase
· Hbase原理及架構
· 數據讀寫流程
· API使用
· 與Hive和Sqoop集成
· 企業級調優
Presto
· Presto的安裝部署
· 使用Presto執行數倉項目的即席查詢模塊
Ranger2.0
· 許可權管理工具Ranger的安裝和使用
Azkaban3.0
· 任務調度工具Azkaban3.0的安裝部署
· 使用Azkaban進行項目任務調度,實現電話郵件報警
Kylin3.0
· Kylin的安裝部署
· Kylin核心思想
· 使用Kylin對接數據源構建模型
Atlas2.0
· 元數據管理工具Atlas的安裝部署
Zabbix
· 集群監控工具Zabbix的安裝部署
DolphinScheler
· 任務調度工具DolphinScheler的安裝部署
· 實現數倉項目任務的自動化調度、配置郵件報警
Superset
· 使用SuperSet對數倉項目的計算結果進行可視化展示
Echarts
· 使用Echarts對數倉項目的計算結果進行可視化展示
Redis
· Redis安裝部署
· 五大數據類型
· 總體配置
· 持久化
· 事務
· 發布訂閱
· 主從復制
Canal
· 使用Canal實時監控MySQL數據變化採集至實時項目
Flink
· 運行時架構
· 數據源Source
· Window API
· Water Mark
· 狀態編程
· CEP復雜事件處理
Flink SQL
· Flink SQL和Table API詳細解讀
Flink 內核
· Flink內核源碼講解
· 經典面試題講解
Git&GitHub
· 安裝配置
· 本地庫搭建
· 基本操作
· 工作流
· 集中式
ClickHouse
· ClickHouse的安裝部署
· 讀寫機制
· 數據類型
· 執行引擎
DataV
· 使用DataV對實時項目需求計算結果進行可視化展示
sugar
· 結合Springboot對接網路sugar實現數據可視化大屏展示
Maxwell
· 使用Maxwell實時監控MySQL數據變化採集至實時項目
ElasticSearch
· ElasticSearch索引基本操作、案例實操
Kibana
· 通過Kibana配置可視化分析
Springboot
· 利用Springboot開發可視化介面程序
Ⅸ 大數據分析需掌握哪些方面
1.Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2.Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3.Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4.Semantic Engines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5.Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
關於大數據分析需掌握哪些方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。