1. 什麼是曲線圖
曲線圖 即圖表的一種,用曲線來表示數據的變化程度。還有柱狀圖,餅狀圖等類型。
2. 大數據開發和數據分析有什麼區別
1、技術區別
大數據開發類的崗位對於code能力、工程能力有一定要求,這意味著需要有一定的編程能力,有一定的語言能力,然後就是解決問題的能力。
因為大數據開發會涉及到大量的開源的東西,而開源的東西坑比較多,所以需要能夠快速的定位問題解決問題,如果是零基礎,適合有一定的開發基礎,然後對於新東西能夠快速掌握。
如果是大數據分析類的職位,在業務上,需要你對業務能夠快速的了解、理解、掌握,通過數據感知業務的變化,通過對數據的分析來做業務的決策。
在技術上需要有一定的數據處理能力,比如一些腳本的使用、sql資料庫的查詢,execl、sas、r等工具的使用等等。在工具層面上,變動的范圍比較少,主要還是業務的理解能力。
2、薪資區別
作為IT類職業中的「大熊貓」,大數據工程師的收入待遇可以說達到了同類的頂級。國內IT、通訊、行業招聘中,有10%都是和大數據相關的,且比例還在上升。
在美國,大數據工程師平均每年薪酬高達17.5萬美元。大數據開發工程師在一線城市和大數據發展城市的薪資是比較高的。
大數據分析:大數據分析同樣作為高收入技術崗位,薪資也不遑多讓,並且,我們可以看到,擁有3-5年技術經驗的人才薪資可達到30K以上。
3、數據存儲不同
傳統的數據分析數據量較小,相對更加容易處理。不需要過多考慮數據的存儲問題。而大數據所涉及到的數據具有海量、多樣性、高速性以及易變性等特點。因此需要專門的存儲工具。
4、數據挖掘的方式不同
傳統的數據分析數據一般採用人工挖掘或者收集。而面對大數據人工已經無法實現最終的目標,因此需要跟多的大數據技術實現最終的數據挖掘,例如爬蟲。
3. 大數據技術包括哪些
大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。
1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。
2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
4. 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
5. Java 大數據統計 折線圖
你可以試試chrome加來birt。其實jvm內存是有限自的,幾百萬個點很快就吃光你的內存了。
如果你用birt雖然後台畫的時候慢一點,但是結果就是一個網頁展示jpg圖片,所以前端用戶那裡應該還是比較快的。