导航:首页 > 编程大全 > 多层感知机神经网络

多层感知机神经网络

发布时间:2022-09-12 18:03:34

㈠ SPSS统计分析案例:多层感知器神经网络

SPSS统计分析案例:多层感知器神经网络
神经网络模型起源于对人类大脑思维模式的研究,它是一个非线性的数据建模工具, 由输入层和输出层、 一个或者多个隐藏层构成神经元,神经元之间的连接赋予相关的权重, 训练学习算法在迭代过程中不断调整这些权重,从而使得预测误差最小化并给出预测精度。
在SPSS神经网络中,包括多层感知器(MLP)和径向基函数(RBF)两种方法。
本期主要学习多层感知器神经网络,要把它讲清楚是比较困难的,为了能直观感受它的功能,首先以一个案例开始,最后再总结知识。
案例数据
该数据文件涉及某银行在降低贷款拖欠率方面的举措。该文件包含 700 位过去曾获得贷款的客户财务和人口统计信息。请使用这 700 名客户的随机样本创建多层感知器神经网络模型。银行需要此模型对新的客户数据按高或低信用风险对他们进行分类。
第一次分析:菜单参数
要运行“多层感知器”分析,请从菜单中选择:
分析 > 神经网络 > 多层感知器
如上图所示,MLP主面板共有8个选项卡,至少需要设置其中"变量"、"分区"、"输出"、"保存"、"导出"等5个选项卡,其他接受软件默认设置。
▌ "变量"选项卡
将"是否拖欠"移入因变量框;
将分类变量"学历"移入因子框,其他数值变量移入"协变量"框;
因各协变量量纲不同,选择"标准化"处理;
▌ "分区"选项卡
在此之前,首先在 "转换 > 随机数生成器"菜单中设置随机数固定种子为9191972(此处同SPSS官方文档,用户可以自由设定),因为"分区"选项卡中,要求对原始数据文件进行随机化抽样,将数据划分为"训练样本"、"支持样本"、"检验样本"3个区块,为了随机过程可重复,所以此处指定固定种子一枚;
初次建模,先抽样70%作为训练样本,用于完成自学习构建神经网络模型,30%作为支持样本,用于评估所建立模型的性能,暂不分配检验样本;
▌ "输出"选项卡
勾选"描述"、"图";
勾选"模型摘要"、"分类结果"、"预测实测图";
勾选"个案处理摘要";
构成"自变量重要性分析";
这是第一次尝试性的分析,主要参数设置如上,其他选项卡接受软件默认设置,最后返回主面板,点击"确定"按钮,软件开始执行MLP过程。
第一次分析产生的结果:
主要看重点的结果,依次如下:
个案处理摘要表,700个贷款客户的记录,其中480个客户被分配到训练样本,占比68.6%,另外220个客户分配为支持样本。
模型摘要表,首次构建的MLP神经网络模型其不正确预测百分比为12.7%,独立的支持样本检验模型的不正确百分比为20.9%,提示"超出最大时程数",模型非正常规则中止,显示有过度学习的嫌疑。
判断:首次建立的模型需要预防过度训练。
第二次分析:菜单参数
首次分析怀疑训练过度,所以第二次分析主要是新增检验样本以及输出最终的模型结果。
运行“多层感知器”分析,请从菜单中选择:
分析 > 神经网络 > 多层感知器
▌ "分区"选项卡
对样本进行重新分配,总700样本,支持样本继续30%,训练样本由原来的70%缩减至50%,另外的20%分配给独立的检验样本空间;
▌ "保存"选项卡
保存每个因变量的预测值或类别;
保存每个因变量的预测拟概率;
▌ "导出"选项卡
将突触权重估算值导出到XML文件;
给XML模型文件起名并制定存放路径;
其他选项卡的操作和第一次分析保持一致。返回主面板,点击"确定"开始执行第二次分析。
第一次分析产生的结果:
总样本在3个分区的分配比例。
MLP神经网络图,模型包括1个输入层、1个隐藏层和1个输出层,输入层神经元个数12个,隐藏层9个,输出层2个。
模型摘要表,模型误差在1个连续步骤中未出现优化减少现象,模型按预定中止。模型在3个分区中的不正确预测百分比较接近。
模型分类表,软件默认采用0.5作为正确和错误的概率分界,将3大分区样本的正确率进行交叉对比,显示出预测为NO,即预测为不拖欠的概率高于拖欠,模型对有拖欠的贷款客户风险识别能力较低。
预测-实测图,按照贷款客户是否拖欠与预测结果进行分组,纵坐标为预测概率。以0.5为分界时,对优质客户的识别效果较好,但是有较大的概率在识别有拖欠客户上出错。
显然以0.5作为分界并不是最优解,可以尝试将分界下移至0.3左右,此操作会使第四个箱图中大量欠贷客户正确地重新分类为欠贷者,提高风险识别能力。
自变量重要性图,重要性图为重要性表格中值的条形图,以重要性值降序排序。其显示与客户稳定性(employ、address)和负债(creddebt、debtinc)相关的变量对于网络如何对客户进行分类有重大影响;
最后来看导出的XML模型文件:
以XML文件存储了第二次构建的MLP神经网络模型,可以用于新客户的分类和风险识别。
新客户分类
假设现在有150名新客户,现在需要采用此前建立的模型,对这些客户进行快速的风险分类和识别。
打开新客户数据,菜单中选择:
实用程序 > 评分向导
型"XML文件,点击"下一步":
检查新数据文件变量的定义是否准确。下一步。
选择输出"预测类别的概率"、"预测值"。完成。
新客户数据文件新增3列,分别给出每一个新客户的预测概率和风险分类(是否欠贷)。
多层感知器神经网络 总结
一种前馈式有监督的学习技术;
多层感知器可以发现极为复杂的关系;
如果因变量是分类型,神经网络会根据输入数据,将记录划分为最适合的类别;
如果因变量是连续型,神将网络预测的连续值是输入数据的某个连续函数;
建议创建训练-检验-支持三个分区,网络训练学习将更有效;
可将模型导出成 XML 格式对新的数据进行打分;

㈡ DNN、RNN、CNN分别是什么意思

DNN(深度神经网络),是深度学习的基础。

DNN可以理解为有很多隐藏层的神经网络。这个很多其实也没有什么度量标准, 多层神经网络和深度神经网络DNN其实也是指的一个东西,当然,DNN有时也叫做多层感知机(Multi-Layer perceptron,MLP)。

从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,如下图示例,一般来说第一层是输出层,最后一层是输出层,而中间的层数都是隐藏层。

CNN(卷积神经网络),是一种前馈型的神经网络,目前深度学习技术领域中非常具有代表性的神经网络之一。

CNN在大型图像处理方面有出色的表现,目前已经被大范围使用到图像分类、定位等领域中。相比于其他神经网络结构,卷积神经网络需要的参数相对较少,使的其能够广泛应用。

RNN(循环神经网络),一类用于处理序列数据的神经网络,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。

从广义上来说,DNN被认为包含了CNN、RNN这些具体的变种形式。在实际应用中,深度神经网络DNN融合了多种已知的结构,包含卷积层或LSTM单元,特指全连接的神经元结构,并不包含卷积单元或时间上的关联。

㈢ “深度学习”和“多层神经网络”的区别

1)浅层学习是机器学习的第一次浪潮。
20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。这个时候的人工神经网络,虽也被称作多层感知机(Multi-layer Perceptron),但实际是种只含有一层隐层节点的浅层模型。
20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。
2)深度学习是机器学习的第二次浪潮。
2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。(多层的好处是可以用较少的参数表示复杂的函数)

㈣ 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。

㈤ CNN、RNN、DNN的一般解释

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

转自知乎 科言君  的回答

神经网络技术起源于上世纪五、六十年代,当时叫 感知机 (perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。 (扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法机械实现的,脑补一下科学家们扯着密密麻麻的导线的样子…)

但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力(比如最为典型的“异或”操作)。连异或都不能拟合,你还能指望这货有什么实际用途么o(╯□╰)o

随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的 多层感知机 (multilayerperceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机(废话……)。好好,我们看一下多层感知机的结构:

图1 上下层神经元全部相连的神经网络——多层感知机

多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。对,这货就是我们现在所说的 神经网络 NN ——神经网络听起来不知道比感知机高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)很重要!

多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。相信年轻如Hinton当时一定是春风得意。

多层感知机给我们带来的启示是, 神经网络的层数直接决定了它对现实的刻画能力 ——利用每层更少的神经元拟合更加复杂的函数[1]。

(Bengio如是说:functions that can be compactly

represented by a depth k architecture might require an exponential number of

computational elements to be represented by a depth k − 1 architecture.)

即便大牛们早就预料到神经网络需要变得更深,但是有一个梦魇总是萦绕左右。随着神经网络层数的加深, 优化函数越来越容易陷入局部最优解 ,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加, “梯度消失”现象更加严重 。具体来说,我们常常使用sigmoid作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。

2006年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层[2],神经网络真正意义上有了“深度”,由此揭开了深度学习的热潮。这里的“深度”并没有固定的定义——在语音识别中4层网络就能够被认为是“较深的”,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。单从结构上来说, 全连接的 DNN 和图 1 的多层感知机是没有任何区别的 。

值得一提的是,今年出现的高速公路网络(highway network)和深度残差学习(deep resial learning)进一步避免了梯度消失,网络层数达到了前所未有的一百多层(深度残差学习:152层)[3,4]!具体结构题主可自行搜索了解。如果你之前在怀疑是不是有很多方法打上了“深度学习”的噱头,这个结果真是深得让人心服口服。

图2 缩减版的深度残差学习网络,仅有34 层,终极版有152 层,自行感受一下

如图1所示,我们看到 全连接 DNN 的结构里下层神经元和所有上层神经元都能够形成连接 ,带来的潜在问题是 参数数量的膨胀 。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。另外,图像中有固有的局部模式(比如轮廓、边界,人的眼睛、鼻子、嘴等)可以利用,显然应该将图像处理中的概念和神经网络技术相结合。此时我们可以祭出题主所说的卷积神经网络CNN。对于CNN来说,并不是所有上下层神经元都能直接相连,而是 通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。 两层之间的卷积传输的示意图如下:

图3 卷积神经网络隐含层(摘自Theano 教程

通过一个例子简单说明卷积神经网络的结构。假设图3中m-1=1是输入层,我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100*100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100*100区域内像素的加权求和,以此类推。同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。

图4 一个典型的卷积神经网络结构,注意到最后一层实际上是一个全连接层(摘自Theano 教程)

在这个例子里,我们注意到 输入层到隐含层的参数瞬间降低到了 100*100*100=10^6 个 !这使得我们能够用已有的训练数据得到良好的模型。题主所说的适用于图像识别,正是由于 CNN 模型限制参数了个数并挖掘了局部结构的这个特点 。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。

全连接的DNN还存在着另一个问题——无法对时间序列上的变化进行建模。然而, 样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要 。对了适应这种需求,就出现了题主所说的另一种神经网络结构——循环神经网络RNN。

在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在 RNN 中,神经元的输出可以在下一个时间戳直接作用到自身 ,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!表示成图就是这样的:

图5 RNN 网络结构

我们可以看到在隐含层节点之间增加了互连。为了分析方便,我们常将RNN在时间上进行展开,得到如图6所示的结构:

图6 RNN 在时间上进行展开

Cool, ( t+1 )时刻网络的最终结果O(t+1) 是该时刻输入和所有历史共同作用的结果 !这就达到了对时间序列建模的目的。

不知题主是否发现,RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说, “梯度消失”现象又要出现了,只不过这次发生在时间轴上 。对于t时刻来说,它产生的梯度在时间轴上向历史传播几层之后就消失了,根本就无法影响太遥远的过去。因此,之前说“所有历史”共同作用只是理想的情况,在实际中,这种影响也就只能维持若干个时间戳。

为了解决时间上的梯度消失,机器学习领域发展出了 长短时记忆单元 LSTM ,通过门的开关实现时间上记忆功能,并防止梯度消失 ,一个LSTM单元长这个样子:

图7 LSTM 的模样

除了题主疑惑的三种网络,和我之前提到的深度残差学习、LSTM外,深度学习还有许多其他的结构。举个例子,RNN既然能继承历史信息,是不是也能吸收点未来的信息呢?因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了 双向 RNN 、双向 LSTM ,同时利用历史和未来的信息。

图8 双向RNN

事实上, 不论是那种网络,他们在实际应用中常常都混合着使用,比如 CNN 和RNN 在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。 不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。尽管看起来千变万化,但研究者们的出发点肯定都是为了解决特定的问题。题主如果想进行这方面的研究,不妨仔细分析一下这些结构各自的特点以及它们达成目标的手段。入门的话可以参考:

Ng写的Ufldl: UFLDL教程 - Ufldl

也可以看Theano内自带的教程,例子非常具体: Deep Learning Tutorials

欢迎大家继续推荐补充。

当然啦,如果题主只是想凑个热闹时髦一把,或者大概了解一下方便以后把妹使,这样看看也就罢了吧。

参考文献:

[1]

Bengio Y. Learning Deep

Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009,

2(1):1-127.

[2]

Hinton G E, Salakhutdinov R R.

Recing the Dimensionality of Data with Neural Networks[J]. Science, 2006,

313(5786):504-507.

[3]

He K, Zhang X, Ren S, Sun J. Deep

Resial Learning for Image Recognition. arXiv:1512.03385, 2015.

[4]

Srivastava R K, Greff K,

Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.

㈥ 多层感器有监督学习是不是可以理解为BP神经网络

多层感知器不是一个具体的神经网络,它是一种神经网络模型的结构,bp神经网络的模型的确是多层感知器,不过bp神经网络是利用bp算法来优化网络的,可以理解为
bp神经网络 = 多层感知器 + bp算法

㈦ 什么是多层感知器,什么是单层感知器

1.感知器

感知器(Perceptron),是神经网络中的一个概念,在1950s由Frank Rosenblatt第一次引入。

2.单层感知内器

单层感知器(Single Layer Perceptron)是最简单的容神经网络。它包含输入层和输出层,而输入层和输出层是直接相连的。

图2.2就是一个多层感知器。

对于多层感知器的计算也是比较简单易懂的。首先利用公式1计算每一个。

㈧ 多层感知器和bp神经网络解决异或问题有什么不同

BP神经网络,指的是用了“BP算法”进行训练的“多层感知器模型”。 多层感知器(MLP,Multilayer Perceptron)是版一种前馈人工神经网络模权型,其将输入的多个数据集映射到单一的输出的数据集上,可以解决任何线性不可分问题。 不要把算法和网络搞混了。

㈨ sklearn 神经网络 MLPClassifier简单应用与参数说明

MLPClassifier是一个监督学习算法,下图是只有1个隐藏层的MLP模型 ,左侧是输入层,右侧是输出层。

上图的整体结构可以简单的理解为下图所示:

MLP又名多层感知机,也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐藏层,如果没有隐藏层即可解决线性可划分的数据问题。最简单的MLP模型只包含一个隐藏层,即三层的结构,如上图。

从上图可以看到,多层感知机的层与层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。多层感知机最底层是输入层,中间是隐藏层,最后是输出层。

输入层没什么好说,你输入什么就是什么,比如输入是一个n维向量,就有n个神经元。

隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是

f(W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数:

最后就是输出层,输出层与隐藏层是什么关系?其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是softmax(W2X1+b2),X1表示隐藏层的输出f(W1X+b1)。

MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数G是softmax

因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(sgd):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等。

下面写了一个超级简单的实例,训练和测试数据是mnist手写识别数据集:

from sklearn.neural_network import MLPClassifier

import gzip

import pickle

with gzip.open('./mnist.pkl.gz') as f_gz:

    train_data,valid_data,test_data = pickle.load(f_gz)

clf = MLPClassifier(solver='sgd',activation = 'identity',max_iter = 10,alpha = 1e-5,hidden_layer_sizes = (100,50),random_state = 1,verbose = True)

clf.fit(train_data[0][:10000],train_data[1][:10000])

print clf.predict(test_data[0][:10])

print(clf.score(test_data[0][:100],test_data[1][:100]))

print(clf.predict_proba(test_data[0][:10]))

参数说明:

参数说明: 

1. hidden_layer_sizes :例如hidden_layer_sizes=(50, 50),表示有两层隐藏层,第一层隐藏层有50个神经元,第二层也有50个神经元。 

2. activation :激活函数,{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, 默认relu 

- identity:f(x) = x 

- logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x)). 

- tanh:f(x) = tanh(x). 

- relu:f(x) = max(0, x) 

3. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, 默认adam,用来优化权重 

- lbfgs:quasi-Newton方法的优化器 

- sgd:随机梯度下降 

- adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器 

注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。 

4. alpha :float,可选的,默认0.0001,正则化项参数 

5. batch_size : int , 可选的,默认’auto’,随机优化的minibatches的大小batch_size=min(200,n_samples),如果solver是’lbfgs’,分类器将不使用minibatch 

6. learning_rate :学习率,用于权重更新,只有当solver为’sgd’时使用,{‘constant’,’invscaling’, ‘adaptive’},默认constant 

- ‘constant’: 有’learning_rate_init’给定的恒定学习率 

- ‘incscaling’:随着时间t使用’power_t’的逆标度指数不断降低学习率learning_rate_ ,effective_learning_rate = learning_rate_init / pow(t, power_t) 

- ‘adaptive’:只要训练损耗在下降,就保持学习率为’learning_rate_init’不变,当连续两次不能降低训练损耗或验证分数停止升高至少tol时,将当前学习率除以5. 

7. power_t: double, 可选, default 0.5,只有solver=’sgd’时使用,是逆扩展学习率的指数.当learning_rate=’invscaling’,用来更新有效学习率。 

8. max_iter: int,可选,默认200,最大迭代次数。 

9. random_state:int 或RandomState,可选,默认None,随机数生成器的状态或种子。 

10. shuffle: bool,可选,默认True,只有当solver=’sgd’或者‘adam’时使用,判断是否在每次迭代时对样本进行清洗。 

11. tol:float, 可选,默认1e-4,优化的容忍度 

12. learning_rate_int:double,可选,默认0.001,初始学习率,控制更新权重的补偿,只有当solver=’sgd’ 或’adam’时使用。 

14. verbose : bool, 可选, 默认False,是否将过程打印到stdout 

15. warm_start : bool, 可选, 默认False,当设置成True,使用之前的解决方法作为初始拟合,否则释放之前的解决方法。 

16. momentum : float, 默认 0.9,动量梯度下降更新,设置的范围应该0.0-1.0. 只有solver=’sgd’时使用. 

17. nesterovs_momentum : boolean, 默认True, Whether to use Nesterov’s momentum. 只有solver=’sgd’并且momentum > 0使用. 

18. early_stopping : bool, 默认False,只有solver=’sgd’或者’adam’时有效,判断当验证效果不再改善的时候是否终止训练,当为True时,自动选出10%的训练数据用于验证并在两步连续迭代改善,低于tol时终止训练。 

19. validation_fraction : float, 可选, 默认 0.1,用作早期停止验证的预留训练数据集的比例,早0-1之间,只当early_stopping=True有用 

20. beta_1 : float, 可选, 默认0.9,只有solver=’adam’时使用,估计一阶矩向量的指数衰减速率,[0,1)之间 

21. beta_2 : float, 可选, 默认0.999,只有solver=’adam’时使用估计二阶矩向量的指数衰减速率[0,1)之间 

22. epsilon : float, 可选, 默认1e-8,只有solver=’adam’时使用数值稳定值。 

属性说明: 

- classes_:每个输出的类标签 

- loss_:损失函数计算出来的当前损失值 

- coefs_:列表中的第i个元素表示i层的权重矩阵 

- intercepts_:列表中第i个元素代表i+1层的偏差向量 

- n_iter_ :迭代次数 

- n_layers_:层数 

- n_outputs_:输出的个数 

- out_activation_:输出激活函数的名称。 

方法说明: 

- fit(X,y):拟合 

- get_params([deep]):获取参数 

- predict(X):使用MLP进行预测 

- predic_log_proba(X):返回对数概率估计 

- predic_proba(X):概率估计 

- score(X,y[,sample_weight]):返回给定测试数据和标签上的平均准确度 

-set_params(**params):设置参数。

阅读全文

与多层感知机神经网络相关的资料

热点内容
玉米win10系统下载 浏览:134
fgo技能升级减cd吗 浏览:129
什么记账app免费好用 浏览:441
网络检测可以检测到什么 浏览:504
sip协议教程 浏览:832
编程哪里可以接项目 浏览:119
孤岛惊魂win10 浏览:246
网络HRV是什么意思 浏览:918
word框中打勾 浏览:577
tcl笔试题java 浏览:467
win10怎么登录安全模式 浏览:679
除了archdaily还有什么网站 浏览:567
数控下料圆形怎么编程 浏览:785
安装游戏在文件管理找不到怎么办 浏览:216
想买奢侈包包下载什么app 浏览:1000
闪送员是哪里的app 浏览:530
火车站进站闸机的数据哪里可以查 浏览:503
cad备份文件清理软件 浏览:822
夹具装配图cad文件百度网盘 浏览:567
如何将excel表格转成文件包 浏览:1

友情链接